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ABSTRACT

In this paper we analyse the robustness of (algebraic) multigrid preconditioners applied to linear systems
arising from finite element approximations of elliptic PDEs with high-contrast coefficients. Problems
with high-contrast coefficients are ubiquitous in porous media flow applications. Consequently, devel-
opment of efficient solvers for high-contrast heterogeneous media has been an active area of research.
Here we are particularly concerned with the convergence of a family of algebraic preconditioners that
exploit the binary character of high-contrast coefficients (see also [1]).

We consider preconditioners for piecewise linear finite element discretisations of boundary-value prob-
lems for the model elliptic problem

−∇ · (α∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2 or 3 with suitable boundary conditions on
the boundary ∂Ω. The coefficient α(x) may vary over many orders of magnitude in an unstructured way
on Ω. A finite element discretisation of (1) yields the linear system Au = f , and it is well-known that
the conditioning of A worsens when the mesh T h is refined or when the heterogeneity (characterised
by the range of α) becomes large. It is of interest to find solvers for this system which are robust to the
heterogeneity as well as to the mesh width h.

In the literature there are many papers devoted to the efficient solution of this problem with a rigor-
ous justification when discontinuities in α are simple interfaces which can be resolved by a coarse
mesh. Even if suitable coefficient-resolving coarse meshes are not available, good performance of
Krylov-based methods can still be achieved by standard preconditioners when there is a small num-
ber of unresolved interfaces. This is because the preconditioning produces a highly clustered spectrum
with correspondingly few near-zero eigenvalues ([2,5]). For more general complicated heterogeneous
high-contrast media, recent progress was made in [3,4].

At the same time it is well-known that algebraic multigrid (AMG) procedures also produce optimal
robust solvers for such heterogeneous problems, but so far theoretical justification of their robustness
with respect to coefficient variation is lacking. The family of algebraic preconditioners proposed in



this paper can be constructed in similar ways as AMG preconditioners by identifying strong and weak
couplings in the stiffness matrix. However for this new family we can prove the robustness and we
demonstrate this on a sequence of model problems. Moreover, our numerical experiments show that for
sufficiently high contrast the performance of our new preconditioners is almost identical to that of the
Ruge and Stüben AMG preconditioner, both in terms of iteration count and CPU-time ([1]).

To give some more details, the first (algebraic) phase of our family of preconditioners involves parti-
tioning of the degrees of freedom into a set corresponding to a “high-permeability” region ΩH and a
“low-permeability” region ΩL. Note that (for sufficiently high contrast) this can easily be obtained by
using a strong-connection criterion similar to that used in AMG algorithms. Thus the stiffness matrix

can be partitioned into A =
[
AHH AHL

ALH ALL

]
. After a little algebra, the exact inverse of A can be

written:

A−1 =
[
I −A−1

HHAHL

0 I

][
A−1

HH 0
0 S−1

][
I 0

−ALHA
−1
HH I

]
(2)

where S = ALL −ALHA
−1
HHAHL is the Schur complement of AHH in A.

A singular perturbation analysis can now be devised to explain the properties of the subblocks in (2)
and to derive sharp bounds for the eigenvalues of the preconditioned stiffness matrix. Arguments of this
type were first used in the context of condition number analyses for additive Schwarz methods in [2].
More recently this approach was refined to treat the more complicated problem of analysing multigrid
preconditioners in [6]. Here we use the singular perturbation-type analysis in a different context.

Suppose for simplicity that α|ΩH
= α̂ � 1 and that α|ΩL

= 1. (Note however, that our method and
our analysis are not restricted to this piecewise constant model situation.) It is clear that α̂−1AHH =
NHH +O(α̂−1) , as α̂→∞, where NHH is the matrix corresponding to the pure Neumann problem
for the Laplace operator on ΩH . This shows that (after scaling by α̂−1) AHH can be preconditioned ro-
bustly and efficiently by standard multilevel methods, such as geometric multigrid, with a performance
independent of h and α̂.

Moreover the analysis of AHH as α̂→∞ has important implications for the behaviour of S. We show
that in this case S = S(∞) + O(α̂−1) , where S(∞) is a low rank perturbation of ALL. The rank of
the perturbation depends on the number of disconnected components (“islands”) in ΩH . This special
limiting form of S allows us to build robust approximations of S−1, e.g. combining solves with ALL

(again available robustly using standard multilevel methods) with the Sherman-Morrison-Woodbury
formula. Finally, we show that the application of the two remaining blocks in (2) corresponds (in the
high-contrast limit) to deflation with respect to certain low frequency eigenvectors.
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