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Manycore chip architectures such as Graphics Processing Units (GPUs) have been shown to be highly e�cient both in
terms of total performance and small power consumption in many areas of Scientific Computing. However, implementing
memory-bound applications such as elliptic solvers for large partial di↵erential equations (PDEs) remains a challenge.

We consider iterative solvers for strongly anisotropic PDEs which arise in many problems in geophysical modelling in
“flat” domains, such as numerical weather- and climate prediction (NWP), global ocean models or subsurface reservoir-
and flow- simulations. For example, an equation for the pressure correction has to be solved in a thin spherial shell
representing the earth’s atmosphere at every timestep in many NWP codes. To improve the accuracy of the model, the
spatial resolution is continuously increased and this leads to significant computational challenges as forecasts have to be
delivered on operational timescales.

Optimised “matrix-free” GPU implementation. We developed an optimised GPU implementation of a precon-
ditioned conjugate gradient (PCG) algorithm which deals with the strong vertical anisotropy by relaxing all degrees of
freedom in a vertical column simultaneously [1]. The main components of the algorithm are a sparse matrix-vector prod-
uct (SpMV) and a tridiagonal solve based on the Thomas algorithm (see e.g. [2]). To achieve coalesced memory access
in the tridiagonal solver, it is crucial to store field vectors such that the horizontal index is contiguous in memory. We
demonstrated that because of the tensor product structure of the grid and the operator the performance can be improved
significantly by using a “matrix-free” implementation where the local matrix stencil is recalculated on-the-fly instead of
reading it from memory. This is illustrated in Fig. 1 (left) where we compare the implementation based on the CuSparse
library to our optimised code. In addition, further speedups could be achieved by reducing global memory access through
fusing di↵erent GPU kernels. In total our optimised algorithm can harness 25% � 50% of the theoretical peak global
memory bandwidth on an nVidia Fermi M2090 GPU and is 50⇥ faster than the sequential CPU implementation on a

Figure 1: Time per iteration for di↵erent GPU implementations of the PCG solver (left) and global memory bandwidth for di↵erent problem

sizes (right). The computationally most expensive kernels are highlighted in red and blue.
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Figure 2: Weak scaling of the time per iteration on Emerald (dashed) and Titan (solid lines). Figure provided by Benson Muite.

Sandybridge chip (see Fig. 1, right).

Multi-GPU solvers. To reduce the global model resolution to the order of a few kilometers, an algebraic system with
more than 10 billion unknowns needs to be solved, which is not possible on a single GPU. Using the Generic Communication
Library (GCL) [3] we extended our approach to GPU clusters and demonstrated its scalability on EMERALD and on up
to 16384 GPUs on the Titan supercomputer (Fig. 2). The largest system we solved had more than 1 trillion unknowns
and required a time per iteration of around 100 milliseconds.

Recently we have shown [4] that on CPU clusters bespoke geometric multigrid solvers can reduce the number of iter-
ations significantly. Compared to Krylov-subspace solvers the only additional ingredients are intergrid operators, which
can partially be fused with the existing kernels to improve cache resuage. We are currently working on the GPU imple-
mentation of the algorithm and hope to report some preliminary results soon.
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