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Abstract Using a toy model for subsurface flow in highly heterogeneous mate-
rials, we demonstrate a methodology for building customized coarse models from
local eigenvalues problems in overlapping subdomains. We show that this method-
ology allows you to efficiently build accurate multiscale models with very few
macroscale degrees of freedom for cases where classical computational homoge-
nization methods break down. Such methods show great potential for modeling
highly heterogeneous material where properties vary over very small length scales.
Such problems are typical in many engineering applications, for example subsur-
face flow and composite materials.
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1 Introduction

We consider mathematical models represented by elliptic partial differential equa-
tions (PDEs) with high contrast coefficients that vary over small length scales
relative to the macroscale dimension. Such models naturally arise in many engi-
neering applications, for example composite materials or flow within porous media.
In this paper we consider a toy model for porous media given by the scalar elliptic
PDE

−∇ · (k(x)∇u(x)) = 1 ∀x ∈ Ω := [0, 1]2 (1)

subject to homogeneous Dirichlet boundary conditions u(x) = 0 for all x ∈ ∂Ω.
Here u(x) denotes the pressure field and k(x) is a spatially varying permeability
field. For the numerical examples within this paper we take k(x)to be the random
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Fig. 1 (Left) Single realization of random field generated from a log-normal random field,
characterized by a small correlation length and high contrast (colors plotted on a log scale)
(Right) A block of rock with three high permeability channels, spanned by a single macroscale
linear finite element.

field generated from a single sample of a log-normal random field, shown in Fig 1
(left).

Equation 1 can be solved using finite elements for which we seek the approx-
imate solution uh ∈ Vh (the space of piece linear functions on a grid Th) which
satisfies the variational equation∫

Ω
k(x)∇uh · ∇vh dx +

∫
Ω
vh dx = 0 ∀vh ∈ Vh. (2)

Capturing the fine scale details, arising from the variations in k(x) at the small
length scales, is computationally expensive since we require a sufficiently small
mesh size (h). It is therefore, natural to try and build efficient multiscale methods
which upscales the microscale information to a coarse / lower dimensional finite
element space VH , which still captures the local microscale information of k(x).

A natural question arises. What is a good choice of the coarse space VH? It is
easy to construct examples where the coarse model will provide a poor solution
if VH has insufficient degrees of freedom. For example, let VH be the span of
piecewise linear finite elements on a coarse grid characterized by a mesh size H �
h . Consider a block of rock (Fig. 1 (right)) spanned by a single coarse linear
finite element, which contains three channels of high permeability rock (white)
surrounded by low permeability regions (black). One possible flow configuration is
the fluid flows in one direction in two channels and the opposite direction in the
third (as indicated by the arrows in Fig. 1 (right). For a single quadrilateral linear
finite element the horizontal flow can only vary linearly in the vertical direction.
Therefore this local switching of the flow is not a mode which is captured on the
macroscale. For particular boundary conditions, such a coarse space would give
non-representative results of the true microscale solution.

In such cases, additional degrees of freedom need to be added to VH . Partic-
ularly in continuum mechanics this has led to the development of higher order
continuum models, for example Cosserat or strain-gradient continuum[1,2]. Such
models often provide accurate coarse scale descriptions of the microscale although
their development often requires significant physical intuition and must be built
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on a case-by-case basis. In this paper we describe a type of generalized multi-
scale method [3,4] whereby the macroscale model is custom built from a few local
eigenmodes computed on overlapping subdomains. These coarse spaces have been
shown to provide excellent preconditioners for two-level Schwarz method [5]. In
this contribution we focus on their use as a multiscale method and provide step-
by-step details an toy example of this exciting new multiscale method.

2 Customized Coarse Models for Highly Heterogeneous Models

Let Vh be the set of functions u spanned by the basis of piece-wise linear finite

element functions {φk(x)}n:=dim(Vh)
i=1 on a grid Th, which is characterized by the

small grid size h. The indices k will denote the kth degree of freedom, and so
any function in Vh can be represented as u =

∑n
k=1 ukφk(x). This converts the

variational problem (2) to the system of linear equations

Ku = f (3)

where Kij =
∫
Ω k(x)∇φi · ∇φj dx is the stiffness matrix, f i =

∫
Ω φi dx the load

vector and u = [u1, u2, . . . , un]T the solution vector.
Starting with a non-overlapping partition of Ω into N subdomains made up

of disjoint sets of elements Ω = ∪Nj=1Ω
′
j , the domains are overlapped by O layers

to achieve an overlapping partition Ω = ∪Nj=1Ωj . The overlapping regions of a
partition Ωj are denoted by the set

Ω◦j := {x ∈ Ωj : ∃ i 6= j such that x ∈ Ωi}.

Furthermore the subset of indices k for which φk is supported in Ωj is define by

dof(Ωj) := {k : 0 ≤ k ≤ n such that supp(φk) ⊂ Ωj}, (4)

whilst those degrees of freedom active in Ωj are denoted by the set

dof(Ωj) := {k : 0 ≤ k ≤ n such that supp(φk) ∩ Ωj 6= ∅}. (5)

The definition of each of these sets can perhaps be better understood with an
example, as shown in Fig. 2.

The aim is to construct global multiscale basis functions from local eigenfunc-
tions. These local eigenfunctions are functions u ∈ Vh restricted to a partition Ωj .
It is therefore natural to define the function space

Vh(Ωj) := {v|Ωj
: v ∈ Vh}

and the further restriction to those finite element functions which are supported
on Ωj i.e.

Vh,0(Ωj) := {v ∈ Vh(Ωj) : supp(v) ⊂ Ωj}.

Any function u ∈ Vh,0(Ωj) can be extended to Vh by padding it with zeros. This
extension operator is defined by RTj : Vh,0(Ωj)→ Vh, and therefore it’s transpose
Rj : Vh → Vh,0(Ωj) defines the restriction operator of any function u ∈ Vh to
Vh,0(Ωj). In practice the extension operator is can be coded as a sparse matrix



4 Dodwell, Sandhu & Scheichl

Fig. 2 (Left) Domain Ω split into N = 4 non-overlapping subdomains Ω′j (Middle) Shows

overlapping partition Ω4 (red and orange) with the subregion Ω◦4 , the overlapping region
generated once Ω′j are overlapped by 3 layers. (Right) circles mark k ∈ dof(Ω4) and crosses

mark k ∈ dof(Ω4)\dof(Ω4).

RT
j of 0’s and 1’s which maps local degrees of freedom (nodal values) to the their

global counterparts.
In constructing global multiscale basis functions from local eigenfunctions in

overlapping subdomains it is important to carefully deal with those degrees of
freedom which are supported by one more than subdomain. To patch, such over-
lapping functions together, global values at these shared nodes should be some
average value of the values they take in each of the subdomains. To do this we
construct a partition of unity operator.

Firstly we define the value ξk := |{j : k ∈ dof(Ωj)}| for each degree of freedom
k, as the number of subdomains in which a degree of freedom k is supported.

Suppose we have a set of functions w(j) =
∑
k∈dof(Ωj) w

(j)
k φk ∈ Vh(Ωj) for each

partition j = 1 . . . N , we define the local partition of unity operator

Ξj(w
(j)) :=

∑
k∈dof(Ωj)

1

ξk
w

(j)
k φk|Ωj

(6)

which maps Vh(Ωj) → Vh,0(Ωj). We then construct the global function over Ω,
Φ ∈ Vh from the local functions as follows

Φ(w(j)) =
N∑
j=1

RTj Ξj(w
(j)) (7)

In practice the partition of unity operator Ξ is implemented as a matrix operation
X which acts on a vector of nodal values w(j) i.e Xw(j) , where X is a diagonal
matrix with values Xkl = ξ−1

k if k = l and k ∈ dof(Ωj), otherwise Xkl = 0.

For each subdomain j = 1, . . . , N we calculate the first m eigenvalues w(j) ∈
Vh,0(Ωj) of the inner product∫

Ωj

k(x)∇w(j) · ∇v dx, (8)

which, written as matrix operator KΩj
has eigenvectors w(j,i)for i = 1, . . . ,m,

associated with the m lowest eigenvalues. Once these eigenvectors are computed
on each subdomain the coarse space can be constructed as

VH := span{RT
j Ξj(w

(j,`)) : ` = 1, . . . ,m; j = 1, . . . ,N}.
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Fig. 3 Eigenvectors associated with lowest 5 eigenvalues for Ω6 with O = 5

The mapping of coarse mode coefficients in VH to the original fine scale space Vh
can be encode by the mapping RT

H , a matrix of dim(Vh) by Nm, with columns

RT
j Xjw

(i)
j for j = 1, . . . , N and i = 1, . . . ,m. Finally we reformulate the original

variational problem (2) in the customized coarse space so that

KHU = F (9)

where KH = RHKRT
H , U is the solution vector which contains the coefficients of

the coarse modes and F the load vector with entries Fm(j−1)+i = fTRT
j Xjw

(i)
j .

Importantly the computation of the eigenvectors on each subdomain are in-
dependent, and the assembly of KH and F require only nearest-neighbor (subdo-
main) communication. Therefore this coarse model can be assembled efficiently in
parallel. In effect, we substitute one large solve for N independent (parallel) small
eigenvalue problems and one inexpensive coarse solve.

3 Results & Concluding Remarks

In this section we test the methodology for our toy problem (2), for which we take
the permeability field k(x) as a single realization of a random field define by a
log-normal distribution, as shown in Fig. 1 (left). The fine mesh Th is defined on
a uniform square grid with h = 1/200 (i.e. 40,000 elements and 36, 601 degrees
of freedom), the domain is split into N = 16 square non-overlapping domains Ω′j ,
each of 2, 500 elements and then overlapped by O elements to form an overlap-
ping partition Ωj . Figure 3 shows the first 5 eigenvectors of the Ω6 partition (i.e
w(6,i)for i = 1, . . . , 5, with O = 5). We note that the lowest eigenvalue is zero asso-
ciated with a constant pressure in Ω6. This will be the case for any subdomain for
which Ωj contains no degrees of freedom which lie on the constrained boundary of
Ω. First we visually compare the fine scale solution uh computed on the fine grid
Th (Fig. 3 (left) )with the coarse approximation UHwith an overlap of O = 5 and
m = 20, Fig.3 (middle). Defining the error as ε = ‖uh − RT

HUH‖2/‖uh‖2, this
coarse model with over 100 times less degrees of freedom computes the solution
with ε = 0.034. Finally in Fig. 3 (right) we compare the error ε in the coarse
model relative to the fine scale model for various sizes of overlap O and number
of eigenvalues per patch m.

In this short paper we have demonstrated the power of using local spectral
information to build bespoke multiscale function space along the same lines of the
generalized multiscale finite element method [4,5]. This method allows you to con-
struct coarse models with a fraction of the degrees of freedom in comparison to the
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Fig. 4 (Left) Fine scale solution uh(Middle) Bespoke Coarse space solution RT
HUH with

m = 20 and O = 5 (Right)Plot of log(m) against log2(ε) for various values of O.

fine scale counterpart, but still achieve accurate solutions with microscale infor-
mation. For the particular toy model presented the degrees of freedom are reduced
by a factor of over 100, to achieve a solution within 3% of the fine scale solution.
These methods show particular promise for applications in which material param-
eters (coefficients of the PDE) vary over a range length scales, have a complex
distribution and/or demonstrate high contrast. For such cases, the macroscale rel-
evant modes can be unclear, and it is natural to use the local eigenfunctions on
the subdomains to hand pick your coarse space.

We have not demonstrated the computational savings of this method since we
test the methodology on small toy problems (e.g. ∼ 3.6× 104 degrees of freedom).
For such cases, even the fine scale problem and can easily be solved on a single
processor with a good direct solver. We observed a factor 2 - 3 speed up for a error
of 3%. Once we push the applications of this method to 3D problems with large
number of degrees of freedom (e.g. dim(Vh) > 107 ) it is easy to postulate the
method‘s potential. In effect, we substitute one large solve for N independent (par-
allel) small eigenvalue problems and one inexpensive coarse solve. Further gains can
be expected for high contrast materials (e.g. composites materials) which display
significant periodicity, since in such cases only representative local eigenproblems
need be solved. In the short term the application of these methods to 3D linear
elasticity (a vector-valued elliptic PDE) will be explored.
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