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Abstract

In this paper we discuss domain decomposition parallel iterative solvers for highly hetero-
geneous problems of flow and transport in porous media. We are particularly interested in
highly unstructured coefficient variation where standard periodic or stochastic homogenisa-
tion theory is not applicable. When the smallest scale at which the coefficient varies is very
small it is often necessary to scale up the equation to a coarser grid to make the problem
computationally feasible. Standard upscaling or multiscale techniques, require the solution
of local problems in each coarse element, leading to a computational complexity that is at
least linear in the global number N of unknowns on the subgrid. Moreover, except for the
periodic and the isotropic random case, a theoretical analysis of the accuracy of the upscaled
solution is not yet available. Multilevel iterative methods for the original problem on the
subgrid, such as multigrid or domain decomposition, lead to similar computational complex-
ity (i.e. O(N)) and are therefore a viable alternative. However, previously no theory was
available guaranteeing the robustness of these methods to large coefficient variation. We
review a sequence of recent papers where simple variants of domain decomposition methods,
such as overlapping Schwarz and one-level FETI, are proposed that are robust to strong
coefficient variation. Moreover, we extend the theoretical results for the first time also to
the dual-primal variant of FETI.

Keywords: multiscale PDEs; numerical homogenisation; parallel iterative solvers; additive
Schwarz; FETI; conditioning analysis

AMS Subject Classification: 65N55; 65F10; 35B27; 74Q15; 76S05

1 Introduction

In this paper we discuss the use of domain decomposition parallel iterative solvers for highly
heterogeneous problems of flow and transport in porous media, in both the deterministic and
(Monte-Carlo simulated) stochastic cases. We are particularly interested in the case of highly
unstructured coefficient variation where standard periodic or stochastic homogenisation theory
is not applicable, because there is either no a priori scale separation or the variation is not
statistically homogeneous. We will restrict attention to the following important model elliptic
problem

−∇ · (k∇u) = f , (1)

in a bounded polygonal or polyhedral domain Ω ⊂ Rd, d = 2 or 3 with suitable boundary data
on the boundary ∂Ω. The d×d tensor k(x) is assumed isotropic and symmetric positive definite,
but may vary over many orders of magnitude in an unstructured way on Ω. Many examples arise
∗Supported by the Austrian Sciencs Funds (FWF) under grant P19255.
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Figure 1: Typical coefficient distributions: benchmark example of the Society of Petroleum
Engineer, SPE10 (left), and realisation of a lognormal random field (right).

in groundwater flow and oil reservoir modelling, e.g. in the context of the SPE10 benchmark
problem [4] or in the Monte Carlo simulated case of stochastic models for strong heteoregeneities
(with short but finite correlation length) [5] (see Figure 1).

Let T h be a conforming shape-regular simplicial mesh on Ω and let Sh(Ω) denote the space
of continuous piecewise linear finite elements on T h. The finite element discretisation of (1) in
Vh (the N -dimensional subspace of functions in Sh(Ω) which vanish on essential boundaries),
yields the linear system:

Au = f . (2)

It is well-known that the size of this system grows like O(h−d), as T h is refined, and that the
condition number κ(A) of A worsens like O(h−2). Moreover the conditioning of A also depends
on the heterogeneity (characterised by the range and the variability of k). It is of interest to find
solvers for (2) that are robust to changes in the mesh width h as well as to the heterogeneity
in k.

When the smallest scale ε, at which the coefficient tensor k(x) varies, is very small it may
not be feasible to solve (1) on a mesh of size h = O(ε) with standard solvers, and it may be
necessary to scale up the equation to a coarser computational grid of size H � ε. A large
number of computational methods have been suggested over the years in the engineering litera-
ture on how to derive such an upscaled equation numerically (see e.g. the reviews [38, 32, 11]).
More recently this area has also started to attract the attention of numerical analysts, who have
started to try to analyse the approximation properties of such upscaling or multiscale techniques
theoretically. Among the methods that have been suggested and analysed are the Variational
Multiscale Method [16], the Multiscale Finite Element Method [15], the Heterogeneous Multi-
scale Method [8], and the Multiscale Finite Volume Method [17]. However, the existing theory
is restricted to periodic fine scale variation or to certain isotropic random variation. No theory
is yet available that gives a comprehensive analysis of the dependency of the accuracy of the
upscaled solution on the coefficient variation in the general case.

Moreover, if the coefficient varies arbitrarily throughout Ω and there is no scale separation
into a fine O(ε)–scale variation and a coarse O(H)–scale variation, then all these methods require
the solution of local ”cell” problems, of size O((H/ε)d), in each cell or element of the coarse
mesh, i.e. O(H−d) problems. Thus, even if we assume that the local problems can be solved with
optimal (linear) complexity, the total computational cost of the method is O(ε−d). In practice
the complexity may actually be worse. An advantage is of course the fact that the cell problems
are all completely independent from each other. This means that they are very well suited to
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modern multiprocessor machines. This makes this method so attractive to scale up1 physical
problems, especially if the upscaled matrix can be used for several right hand sides or for several
time steps in a time-dependent simulation.

A viable and potentially superior alternative is the use of parallel multilevel iterative solvers,
such as multigrid or domain decomposition, for the original fine scale problem (2) on the “sub-
grid” T h where h = O(ε). These are known to lead to a similar overall computational complexity
with respect to the problem size (i.e. O(ε−d)) and, especially in the case of domain decompo-
sition, they are designed to scale optimally on modern multiprocessor machines. Many of the
new upscaling techniques mentioned above are in fact nothing else but special cases of non-
overlapping domain decomposition methods (c.f. [27]). However, previously no theory was
available that guarantees the robustness of these multilevel iterative solvers to heterogeneities in
the coefficient, and indeed most of the methods are not robust when used unmodified. The most
successful method for (2) that is completely robust to coefficient variations is algebraic multigrid
(AMG), originally introduced in [2, 34]. Many different versions of AMG have emerged since,
but unfortunately no theory exists that proves the (observed) robustness of either of these meth-
ods to arbitrary spatial variation of k(x). The robustness of geometric multigrid for “layered
media” in which discontinuities in k are simple interfaces that can be resolved by the coarsest
mesh has recently been proved in [39]. Some ideas towards a theory for more general coefficients
can be found in [1].2

The situation is different for domain decomposition methods. There are many papers (with
rigorous theory) which solve (2) for “layered media” in which discontinuities in k are simple
interfaces that can be resolved by the subdomain partitioning and the coarse mesh (see e.g. [3,
36]). However, until recently there was no rigorously justified method for general heterogeneous
media. We present (in §2 and 3 below) a summary of some recent papers by the authors, i.e.
[13, 14, 35, 30, 31, 37], where a new analysis of domain decomposition methods for (2) (which
have inherent robustness with respect to h) was presented. This analysis indicates explicitly
how subdomains and coarse solves should be designed in order to achieve robustness also with
respect to heterogeneities. As this is only a review of existing papers we will be fairly brief.
However, we will illustrate the new results on a representative model problem. The interested
reader is referred to the original papers where the results are rigorously proved and supported
by numerical experiments. However, in §4 we will give a non-trivial extension of the existing
theoretical results in [30] on one-level FETI methods to the dual-primal variant of FETI, and
we will include a short proof of this new result. The analysis does not require periodicity and
does not appeal to homogenisation theory.

For the remainder of the paper let us assume that we have a finite nonoverlapping partitioning
of Ω into (open) subdomains {Ωi : i = 1, . . . , s}, with each Ωi assumed to consist of a union
of elements from T h. Let us also define the so-called boundary layer Dη of width η > 0 for a
subdomainD ⊂ Ω, such thatDη consists again of a union of elements from T h and dist(x, ∂D) <
η, for all x ∈ Dη . For the purposes of exposition we will only describe the theory for scalar
k = α I and for homogeneous Dirichlet boundary conditions. Throughout the paper, the
notation C . D (for two quantities C,D) means that C/D is bounded from above independently
of h and of α. Moreover, C ' D means that C . D and D . C.

Before we start, let us emphasize one more time the main point we have tried to make in this
introduction. Numerical upscaling of heterogeneous elliptic problems leads to a computational
complexity that is asymptotically the same as that of multilevel iterative solvers with respect to
the smallest spatial scale ε at which the coefficient varies. However, whereas the latter approach

1In this paper we use the term “scaling up” in the sense of solving larger and larger physical problems, which
is equivalent to letting ε→ 0 on a fixed size domain.

2AMG and the related BoxMG [6] have also recently been used in the context of numerical homogenisation in
[26, 21, 24], but this is not the topic of this paper.
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leads to full fine scale O(ε) accuracy, the former approach will at most obtain coarse scale
O(H) accuracy and usually heterogeneous fine scale variations in the coefficient will pollute the
accuracy even more severely (unless there is a clear scale separation). There is as yet no theory for
this case. On the other hand, the computational complexity of numerical upscaling techniques is
independent of the coefficients, whereas the number of iterations of classical multilevel iterative
solvers grows as the coefficient heterogeneity becomes more severe. The theory which we will
present in the following indicates how, in the case of domain decomposition methods, these
classical solvers should be modified to obtain better robustness to heterogeneities. Note, however,
that the intention here is not to compare different domain decomposition approaches.

2 Overlapping Methods

This section is only intended to be a short review of some recent results in a series of papers
[13, 14, 35, 37]. Therefore we restrict ourselves to the two-level overlapping additive Schwarz
method [25]. The extension of the analysis to other two-level overlapping domain decomposition
methods such as multiplicative Schwarz, balancing techniques, or deflation based coarse grid
correction follows as usual (see [13, 14] for details). The one-level method is analysed in [13].
For theoretical purposes, we shall assume (in this section) that α ≥ 1. This is no loss of
generality, since problem (2) can be scaled by (minx α(x))−1 without changing its conditioning.

Given the initial nonoverlapping partitioning {Ωi : i = 1, . . . , s} of Ω, we start by extending
each subdomain Ωi to a larger region Ω̂i such that Ω̂i consists again of a union of elements from
T h and that there exists a δi > 0 with

x ∈ Ω̂i,δi ⇒ x ∈ Ω̂j , for some j 6= i,

i.e. δi is the minimum amount of overlap for subdomain Ω̂i. If in addition we are given a coarse
space VH ⊂ Vh, then the two-level additive Schwarz preconditioner can be written as

M−1
AS :=

s∑
i=0

RTi A
−1
i Ri . (3)

Here, for i = 1, . . . , s, Ri denotes the restriction matrix from freedoms in Ω to freedoms in Ω̂i.
The projection R0 onto the coarse space will be specified later. A judicious choice of R0 is
crucial to render the preconditioner robust to heterogeneities. The matrices Ai are defined via
the Galerkin product Ai := RiAR

T
i .

The technical assumptions on the coarse space and on the overlapping subdomains made in
the papers [13, 14] and [35, 37] are slightly different. Here we only describe the theory presented
in [13, 14] and for that matter we introduce a (shape regular) coarse grid T H composed of
triangles (d = 2) or tetrahedra (d = 3). A typical element is the (closed) set K, which again we
assume to consist of the union of a set of fine grid elements τ ∈ T h. To simplify the presentation
we assume that {Ωi} = T H , i.e. the nonoverlapping subdomain partitioning coincides with the
coarse grid, and we define a global bound δ > 0 for the (relative) minimum overlap that is
defined as δ := mini=1,...,s

H
Hi
δi, where Hi := diam(Ω̂i).

To specify our assumptions on the coarse space we start with a linearly independent set of
finite element functions {Φj : j = 1, . . . , NH} ⊂ Sh(Ω), where each of the Φj is associated with
a node xHj of T H . A subset of this set will form the basis for our coarse space. The functions
have to satsify the following assumptions:

(C1)
∑NH

j=1 Φj(x) = 1, for all x ∈ Ω̄;

(C2) supp(Φj) ⊂ ωj where ωj :=
⋃
{K : xHj ∈ K};
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(C3) ‖Φj‖L∞(Ω) . 1 ;

i.e. they form a partition of unity on Ω, and each of the functions Φj is bounded and has local
support (restricted to the elements K containing coarse node xHj ). In particular, this implies
Φj(xHk ) = δj,k, for all j, k = 1, . . . , NH . If we further assume that the coarse nodes xHj are
numbered in such a way that xHj ∈ Ω for all j ≤ N and xHj ∈ ∂Ω for all j > N , then we
can choose the coarse space to be VH := span{Φj : j = 1, . . . , N}, i.e. the space spanned
by the functions Φj that vanish on the boundary ∂Ω. The restriction matrix R0 is given by
(R0)j,p := Φj(xhp), where xhp , p = 1, . . . , n, are the interior nodes of T h.

Note that the theory below can be generalised to subdomain partitionings that do not coin-
cide with the coarse mesh. It also extends to more general partitions of unity {Φj} ⊂ Sh(Ω), not
necessarily associated with a simplicial coarse mesh, e.g. aggregation-based coarsening (cf. [35])
or explicit energy minimisation (cf. [37]).

It is well known (see e.g. [36]) that in order to bound κ(M−1
ASA), we need to assume some

upper bounds on |Φj |2H1(Ω) as well. We take a novel approach here and introduce a quantity
which also reflects how the coarse space handles the coefficient heterogeneity:

Definition 2.1 ((Coarse space robustness indicator) ).

γ(α) :=
NHmax
j=1

{
|ωj |2/d−1

∫
Ω
α|∇Φj |2

}
.

Note that this robustness indicator is well-behaved if the Φj have low energy (independently
of any possible variations in α), or in other words, if the Φj have small gradient wherever α is
large.

The second quantity which we introduce measures (in a certain sense) the ability of the
overlapping subdomains Ω̂i to handle the coefficient heterogeneity.

Definition 2.2 ((Partitioning robustness indicator) ).

π(α) := inf{χi}
(

s
max
i=1

{
δ2
i

∥∥α|∇χi|2∥∥L∞(Ω)

})
where the infimum is taken over all partitions of unity {χi} ⊂ W 1

∞(Ω) subordinate to the
cover {Ω̂i}.

Roughly speaking, π(α) is well-behaved if there is a partition of unity whose members have
small gradient wherever α is large.

Using these two robustness indicators and under the assumptions made above we can now
state one of the main results from [13, Theorem 3.9].

Theorem 2.1. Assume that (C1)–(C3) hold true. Then

κ
(
M−1
ASA

)
. π(α) γ(1)

(
1 +

H

δ

)
+ γ(α) .

Thus, provided the overlap δ is sufficiently large with respect to the coarse grid size H, i.e.
δ ' H, then the robustness of two-level additive Schwarz can be reduced to bounding the two
robustness indicators in Definitions 2.1 and 2.2. This provides a recipe for designing a robust
preconditioner and in the remainder of the section we will present some ideas of how to modify
the classical two-level additive Schwarz method to make it more robust.
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Figure 2: Left: two-phase model problem with matrix material (white) and inclusions (grey). Right:
Typical coefficient distribution for Proposition 2.2 (inclusions K` in grey; remainder K̂ in white).

2.1 Robust choices of overlapping subdomains and coarse spaces

As an illustrative example let us consider a two phase material made up of a matrix material
with coefficient α(x) = 1 surrounding a heterogeneous and large set of (polygonal/polyhedral)
inclusions {Y` : ` = 1, . . . , L} where the coefficient α|Y` = α̂ � 1. The set of inclusion {Y`} is
assumed to be such that the diameter of each inclusion Y` is O(ε) and that the distance between
two inclusions Y` and Y`′ , with ` 6= `′, is & ε (see Figure 2).

Let us first discuss the choice of the partitioning {Ωi} and of the overlap, and their influ-
ence on the robustness indicator π(α) in the case of this model problem. Given an arbitrary
partitioning {Ωi}, we can always make π(α) independent of the value of α̂, and thus make the
two-level overlapping Schwarz method partition robust, by choosing the overlap δ sufficiently
large. Indeed, if any inclusion Y` intersects or touches the interface Γij between two subdomains
Ωi and Ωj , it is sufficient to extend them in such a way to overlapping subdomains Ω̂i and Ω̂j

that Y` is a distance & ε from the boundary of Ω̂i ∩ Ω̂j . Because of the assumptions on α it
is suffcient to choose δ & ε to achieve this. To see why this implies π(α) . 1 (independent
of α̂ or ε), simply choose a partition of unity {χi} ⊂ W 1

∞(Ω) subordinate to {Ω̂i}, such that
∇χi|Y` = 0 for all i = 1, . . . , s and ` = 1, . . . , L. Because of the assumptions on the distance
between inclusions, it is possible to choose {χi} such that ‖|∇χi|‖L∞(Ω) . ε−1 which implies
that π(α) . 1.

Now let us investigate the choice of coarse space and its influence on the robustness indicator
γ(α) in the two-phase model case. Since we assumed that α ≥ 1, we always have γ(1) ≤ γ(α).

Example 2.1 ((Linear Finite Element Coarsening).). In the classical case, i.e. when {Φj}
is the standard (nodal) basis for the continuous piecewise linear functions with respect to T H ,
it follows from the shape regularity of T H that

γ(α) ' maxj αj , where αj := |ωj |−1
∫
ωj
α ,

and so for α ' 1 everywhere we have γ(α) ' 1 and Theorem 2.1 reduces to the classical bound
for two-level additive Schwarz. However, if α̂ → ∞, we have γ(α) → ∞ and so Theorem 2
suggests that linear coarsening may not be robust anymore. The numerical results in Table 1
(left) show that this is indeed the case and that γ(α) is a good indicator for the loss of robustness.
The results in Table 1 are for Ω = [0, 1]2 and α(x) = α̂ on an “island” in the interior of each
coarse element K ∈ T H a distance O(H) away from ∂K, with α(x) = 1 otherwise. (For a
precise description of this example see [13, Example 5.1]).
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α̂ κ(M−1
ASA) γ(α)

100 22.0 3.0
102 111 40
104 3870 3750
106 6000 375000

α̂ κ(M−1
ASA) γ(α)

100 22.0 3.0
102 17.7 4.3
104 17.6 4.3
106 17.6 4.3

Table 1: Two-level additive Schwarz with linear (left) and multiscale (right) coarsening for [13, Exam-
ple 5.1] with h = 1/256, δ = 2h, H = 8h.

However, our framework leaves open the possibility of choosing {Φj} to depend on α in such
a way that γ(α) is still well-behaved. The next example gives one possible way of constructing
such Φj .

Example 2.2 ((Multiscale Finite Element Coarsening).). In this example we use multi-
scale finite elements on T H to define VH , as proposed in [15].

Let FH denote the set of all (closed) faces of elements in T H and introduce the skeleton
ΓS =

⋃
{f : f ∈ FH}, i.e. the set of all faces of the mesh, including those belonging to the outer

boundary ∂Ω. The coarse space basis functions Φj are obtained by extending predetermined
boundary data into the interior of each element K using a discrete α-harmonic extension with
respect to the original elliptic operator (1). To introduce boundary data for each j = 1, . . . , NH ,
we introduce functions ψj : ΓS → R which are required to be piecewise linear (with respect to
the fine mesh T h on ΓS) and to satisfy the following assumptions:

(M1)
∑NH

j=1 ψj(x) = 1 , for all x ∈ ΓS ;

(M2) ψj(xHj′ ) = δj,j′ , j, j′ = 1, . . . , NH ;

(M3) 0 ≤ ψj(x) ≤ 1 , for all x ∈ ΓS ;

(M4) ψj ≡ 0 on all faces f ∈ FH such that xHj 6∈ f .

Using ψj as boundary data, the basis function Φj ∈ Sh(Ω) is then defined by discrete α−harmonic
extension of ψj into the interior of each K ∈ T H . That is, for each K ∈ T H , Φj |K ∈ {vh ∈
Sh(K) : vh|∂K = ψj |∂K} is such that∫

K
α∇(Φj |K) · ∇vh = 0 for all vh ∈ Sh(K) with vh|∂K = 0 , (4)

where Sh(K) is the continuous piecewise linear finite element space with respect to T h restricted
to K.

The obvious example of boundary data ψj satisfying (M1)–(M4) are the standard hat func-
tions on T H restricted to the faces of the element K. These boundary conditions are sufficient if
none of the inclusions in K touches ∂K. However, they are not sufficient if α varies strongly near
the boundary ∂K. The “oscillatory” boundary conditions suggested in [15] are more suitable in
this case (see [13] for details). Roughly speaking, to find the boundary data ψj in this case, a
projection of the PDE onto each face f ∈ FH is solved. It can be shown that the resulting ψj
satisfy assumptions (M1)–(M4) (cf. [13]).

The multiscale finite element recipe specifies Φj ∈ Sh(Ω) which can immediately be seen to
satisfy the assumptions (C1)–(C3) (see [13] for details). Therefore Theorem 2.1 applies and we
have the following bound on γ(α) in the case of the two-phase model problem (cf. [13, Thm 4.5]):

Proposition 2.2. γ(α) .
(
H
ε

)2 (1 + log H
ε

)
.
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Note that if all inclusions Y` are a distance & ε away from any boundary ∂K of any element
K ∈ T H , then the bound in Proposition 2.2 can be improved to γ(α) . H

ε (cf. [13, Theorem
4.3]). In any case γ(α) is independent of α̂ and only depends on the relative size of the coarse
grid and of the size of the inclusions. The numerical results in Table 1 (right), obtained for
the test problem introduced in Example 2.1 above, show that additive Schwarz with multiscale
coarsening can indeed be robust even when the coarse mesh does not resolve discontinuities
in α and that our theory accurately predicts this. For more numerical results with multiscale
coarsening for model problems where the inclusions intersect the coarse element boundaries see
[13, 14].

Note that if α̂� 1 in our model problem (defined at the beginning of this section), then no
special coarse space is required to obtain robustness. The proof of this has only been achieved
very recently in [12], and it requires weighted Poincaré inequalities of a similar type than (13)
below.

For more general coefficient distributions, i.e. not just two-phase media with inclusions of one
characteristic size ε, the choice of the partitioning {Ωi} and of the supports {ωj} of the coarse
basis functions is of crucial importance to obtain robustness. This suggests an adaptive choice
of the supports and of the subdomains, taking into account the geometry of the variation of the
coefficient α. Ideas on how to do this based on strong and weak connections in the system matrix
A (as in AMG) are given in [35]. In that paper we also study a different type of coarse space
based on aggregation. Numerical results in [35] show that this adaptive choice of the supports
and of the subdomains can lead to a robust method even in the case of random coefficients α.

3 Nonoverlapping Methods/Substructuring Techniques

Let us now consider one of the (currently) most popular types of nonoverlapping domain decom-
position methods for FE systems such as (2), namely finite element tearing and interconnecting
(FETI) methods [9], and the more recent dual-primal FETI (FETI-DP) methods [10]. They are
known to be parallel scalable and quasi-optimal with respect to the number of degrees of freedom
(DOF). For a comprehensive presentation and the classical analysis of FETI and FETI-DP we
refer to the monograph by Toselli and Widlund [36]. A variant of the classical (or one-level)
FETI method, is the all-floating (or total) FETI method (cf. [7, 28]). In this section we review
our results in [30, 31] on the robustness of one-level FETI methods to highly heterogeneous
coefficients α and give a simple corollary for all-floating FETI. A non-trivial extension of the
theory in [30] to FETI-DP is given in §4.

3.1 Formulation of one-level and all-floating FETI methods

Recall that {Ωi : i = 1, . . . , s} is a partitioning of Ω into s non-overlapping subdomains, and
denote by Γ :=

∑
i,j(∂Ωi ∩ ∂Ωj) \ ∂Ω the interface. As before ΓS := Γ∪ ∂Ω will be the skeleton.

Let Hi be again the subdomain diameter, and denote by hi the mesh size on subdomain Ωi.
To start with, we introduce on each subdomain separate unknowns ui for the solution in-

cluding the DOFs on the subdomain interfaces. Let ui ∈ Sh(Ωi) denote the function that the
coefficient vector ui represents. In order to make the solution continuous, constraints of the
form

ui(xh)− uj(xh) = 0 (5)

are introduced for each finite element node xh on the interface Γ and for all possible combinations
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of i and j, even if this leads to redundancies, cf. [36]. This yields the saddle point problem
A1 0 BT

1
. . .

...
0 As BT

s

B1 · · · Bs 0




u1
...

us
λ

 =


f1
...
fs
0

 , (6)

where the Ai denote the subdomain stiffness matrices, and fi are the corresponding load vectors.
Solving saddle point system (6) is equivalent to solving the original system (2). The operators
Bi are signed Boolean matrices, and each row of the system

∑s
i=1Bi ui = 0 corresponds to one

of the constraints in (5). The Lagrange multiplier λ plays the role of a continuous flux across Γ.
In the all-floating formulation, the Dirichlet boundary conditions are not incorporated in the

finite element spaces, but enforced as additional constraints of the form ui(xh) = 0 for all nodes
xh on ΓD. These can be easily incorporated in (6) leading to additional Lagrange multipliers.

Introducing a special projection P (see below), the dual problem to (6) can be written in
the form

P TF λ = d , (7)

with F :=
∑s

i=1BiA
†
iB

T
i , where the operator A†i corresponds to the pseudoinverse of a (possi-

bly) regularised Neumann problem on subdomain Ωi. For the standard one-level formulation,
subdomains with contributions from the Dirichlet boundary require no regularisation since the
corresponding subdomain stiffness matrix is regular. For the remaining (floating) subdomains,
the local Neumann problems are not uniquely solvable, and so we need to employ a standard
regularisation of Ai to define the corresponding pseudoinverses A†i . Since in the all-floating for-
mulation, the Dirichlet boundary conditions are only imposed weakly, all the subdomain stiffness
matrices are singular and can be treated by the same type of regularisation.

In the following, let Ri denote a full-rank matrix that spans kerAi, and set the projection
P := I −QG(GTQG)−1GT , where G := [B1R1| . . . |BsRs] and Q is a diagonal scaling matrix.
The FETI method is now a special projected preconditioned conjugate gradient (PCG) method
for (7). For each subdomain let Si denote the Schur complement of Ai eliminating the interior
DOFs in Ωi. Its application requires the solution of a local Dirichlet problem on Ωi. The FETI
preconditioner is chosen to be

M−1 := P

s∑
i=1

DiBi SiB
T
i Di , (8)

where Di is a diagonal scaling matrix. Here and in the following we implicitly assume (for ease
of notation) that matrices like Si in the formula above are extended with zero rows and columns
to interior DOFs where necessary. Note that the entries of Q and Di need to be carefully chosen
w.r.t. to the coefficient α, cf. [19, 30].

The projection P involves the solution of a coarse problem that corresponds to a sparse
linear system of dimension O(s). Usually, one selects the subdomain partition in a way that the
local subdomain problems and the coarse problem are of a size that can be efficiently handled
by sparse direct solvers. The factorisations of the local system matrices can be computed in
a preprocessing phase and kept in memory during the whole FETI iteration. Note that these
local, decoupled problems can be parallelised in a straightforward manner, e.g. treating each
subdomain on a different processor. Once problem (7) is solved, the actual solution u can
easily be determined from the Lagrange multiplier λ. The spectral condition number κ of the
preconditioned system can finally be bounded by

κ ≤ C∗(α)
s

max
i=1

(
1 + log(Hi/hi)

)2
, (9)

9



where the constant C∗(α) is independent of Hi, hi, and s.
If the heterogeneities in the coefficient α are resolved by the subdomain partition, i.e. α

is constant on each Ωi, then, Klawonn & Widlund [19] proved that C∗(α) . 1. However, in
general, using classical proof techniques, we only get

C∗(α) .
s

max
i=1

max
x,y∈Ωi

α(x)
α(y)

, (10)

i.e. the bound is proportional to the maximum variation of α in any of the subdomains. However,
as noticed by several authors (e.g. [33, 22]) this asymptotic bound is in general far too pessimistic
in practice, and numerical robustness is observed for much more general heterogeneous coefficient
distributions.

3.2 Robustness results for one-level (and all-floating) FETI

Let us again consider the model problem defined at the beginning of §2.1, i.e. a matrix material
where α(x) = 1 with polygonal/polyhedral inclusions {Y`} of diameter O(ε) where α(x) = α̂,
and analyse the robustness of one-level (and all-floating) FETI when α̂→∞ or α̂→ 0.

To present our theory we require certain technical assumptions. For each subdomain Ωi,
recall that Ωi,ηi denotes the boundary layer of witdh ηi > 0. We now set Hi := diam(Ωi) and
assume that the restriction of T h to Ωi is quasi-uniform with mesh width hi. For neighbouring
subdomains Ωi, Ωj , assume that Hi ' Hj , hi ' hj , and ηi ' ηj . Furthermore we agree on
the standard (technical) assumptions made in [36, Assumption 4.3] for the partitioning {Ωi},
that each subdomain needs to be a union of a uniformly bounded number of simplices, which
alltogether form a geometrically conforming and shape-regular coarse mesh of Ω. Our additional
(but not significantly stronger) regularity assumptions on the subdomain boundary layers Ωi,ηi

can be found in [30].
As noted above, coefficient robustness of FETI can be achieved through a clever choice of

scaling matrices Di and Q in the construction of M−1 (subdomain solves) and P (coarse space
projection). It is sufficient to choose diagonal scaling matrices, but the diagonal entries (each
associated with one of the continuity constraints) need to contain local averages of the coefficient
function α. In particular, if xh is a vertex of the triangulation Ti that lies on the interface Γ,
then the diagonal entry of Di associated with the constraint enforcing the continuity between
Ωi and Ωj at xh is given by

δ†j(x
h) := α̃j(xh)

[∑
k∈N (xh)

α̃k(xh)
]−1

(11)

where N (xh) := {k : xh ∈ ∂Ωk} and α̃i(xh) := max{ατ : τ ∈ Ti and xh ∈ τ}. All other
(diagonal) entries of Di are set to zero. The diagonal entry of Q associated with the constraint
between Ωi and Ωj at xh is given by

hd−2
i min(α̃i(xh), α̃j(xh)) , if |N (xh)| > 2, (12)

i.e. if xh is a vertex of the subdomain partitioning (or lies on a subdomain edge in 3D). If
|N (xh)| = 2, i.e. if xh lies on a edge/face in 2D/3D, respectively, then this needs to be scaled as
in the classical case with (1 + log(Hi/hi))hi/Hi (cf. [19]). For more details on the choice of Di

and Q see [30, 31].
The following result is an application of [30, Theorem 3.3] to our model problem. The proof

for the all-floating case is a simple corollary to [30, Theorem 3.3] and can be found in [29].

Theorem 3.1 ((without interface variation) ). Let us assume that the partitioning {Ωi} is
such that there exists a set {ηi} such that α(x) = 1 for all x ∈ Ωi,ηi and i = 1, . . . , s. Then the
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Figure 3: Estimated condition number of one-level FETI for [30, Example 1] for different values of H/h
and β. Fixed discretisation H/h = 512. Left: β > 0. Right: β < 0.

condition numbers for one-level and for all-floating FETI (with the scaling matrices Di and Q
as specified in (11) and (12)) satisfy

κ .
s

max
i=1

(Hi

ηi

)µ s
max
i=j

(
1 + log(Hj/hj)

)2
with µ = 1, if α̂ ≥ 1, and µ = 2, if α̂ ≤ 1. The hidden constant is independent of α̂, ε, Hi, hi
and ηi.

Because of the assumptions on the coefficients made at the beginning of §2.1 it is always
possible to find such a partitioning of Ω with ηi = O(ε), and so as in the case of two-level
overlapping Schwarz, the bound on κ (almost) reduces to the classical bound for one-level FETI
(i.e. κ . maxi

(
1 + log(Hi/hi)

)2), but with an additional linear (or quadratic) dependence on
maxiHi/ε. Again, the bound is completely independent of the contrast, i.e. of the value of α̂.

Let us give a simple numerical example that confirms the theory above. In this example
([30, Example 1]), we subdivide the unit square Ω into 25 congruent square-shaped subdomains
of width H = 1/5. We choose the coefficient α(x) = 10β in a square region that is contained in
the interior of the central subdomain, and separated by a distance η from its boundary. On the
rest of Ω, we choose α = 1. In Fig. 3 we display the condition number of the one-level FETI
method (estimated by the Lanczos method) for different values of the exponent β from −7 to
+7, and for different ratios H/η. The left part of the figure corresponds to the case where our
theory predicts a linear dependence on H/η, which is perfectly reproduced by the numerical
experiments. The case of a negative exponent β does indeed prove to be the harder case and
leads to a worse conditioning, as predicted by our theory. However, the quadratic dependence
in Theorem 3.1 seems to be overly pessimistic.

In practice it will be difficult to determine such a partitioning for arbitrarily distributed
inclusions Y`, and we need to consider the case where one or more inclusions intersect the
boundary of Ωi. Our computations in [30, Sect. 5.3 and 5.4] show that one-level FETI (with Di

and Q as chosen above) can be suprisingly robust even in the case of large coefficient variation
along subdomain interfaces (see also [33, 18, 22]). The key tools for a theoretical analysis of this
robustness are new weighted Poincaré and discrete Sobolev inequalities which we have proved in
[31] (see also [12]). We state only one of them here and apply it to our particular model problem
in the 2D case where α̂ . 1 (cf. [31, Lemma 3.4 & Remark 3.5(iii)]):

1
η2
i

∫
Ωi,ηi

α|v|2 .
(Hi

ηi

)(
1 + log(Hi/hi)

) ∫
Ωi

α|∇v|2 , (13)
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α̂ condition number iterations
100 7.08 12

10−2 7.17 22
10−4 7.18 22
10−6 7.18 21

Table 2: All-floating FETI for the example in Fig. 4, left, with h = 1/256, H = 64h.

which holds for any finite element function v independently of the value of α̂. The proof of this
inequality requires an artificial extension Ŷ` of all inclusions Y` that intersect the subdomain
boundary to a distinguished point. This is always possible in our model problem. The inequality
then follows from applying a “standard” discrete Sobolev inequality (cf. [36, Lemma 4.21]) in
each of the regions Ŷ` and in the remainder.

Using the weighted Sobolev-type inequality (13) we were able to prove the following theorem
in [31] (suitably simplified to the model problem in this paper).

Theorem 3.2 ((including interface variation) ). Let α̂ . 1. Then the condition numbers
for one-level and for all-floating FETI (with the scaling matrices Di and Q as specified in (11)
and (12)) satisfy

κ .
s

max
i=1

(Hi

ηi

)2 s
max
j=1

(
1 + log(Hj/hj)

)3
.

The hidden constant is again independent of α̂, ε, Hi, hi and ηi.

So apart from a higher polylogarithmic dependence on Hi/hi we obtain the same bound as in
Theorem 3.1. To confirm this result numerically, in Table 2 we display the estimated condition
numbers and the numbers of PCG–iterations for all-floating FETI in the case of the coefficient
distribution shown in Fig. 4, left. We see that the method is completely robust with respect to
variations in α̂.

The case of α̂ � 1 is harder. One-level and all-floating FETI are both only robust in the
case when there is at most one inclusion Y` that intersects ∂Ωi for each i = 1, . . . , s. The theory
in [31] is also able to explain this and it is confirmed in our numerical experiments.

The theory in [31] is in fact much more general and applies to a wide variety of coefficient
variations. In particular it applies to an example from nonlinear mangetostatics [30, Sect. 5.4],
where the subdomain partition is chosen such that coefficient peaks (that arise due to singulari-
ties in the solution) are in the centre of the subdomains, whereas material interfaces are allowed
to cut through subdomain interfaces (cf. Fig. 4, right). Our theory in [31] gives a condition
number bound of O(102) for a variation along the interface that is O(104) (cf. Fig. 4, right).
The estimated condition number of 13.7 is well within this bound, and only 16 FETI-PCG steps
are needed for a residual reduction by 10−6. Note that this is contrary to common folklore
that subdomain partitionings should resolve material interfaces for best robustness. For more
numerical examples see [30, 31].

4 Extension to FETI-DP

In this section we publish for the first time the extensions of the theory in [30] to FETI-DP. For
further details see the thesis [29].

12



Figure 4: Left: Coefficient distribution and subdomain partitioning for our illustrative example. Right:
Coefficient distribution and subdomain partitioning for nonlinear magnetostatics example [30, Sect. 5.4].

4.1 Dual-primal variant of FETI – FETI-DP

In contrast to the FETI methods discussed before, in dual-primal methods, one keeps certain
DOFs continuous. These DOFs, called primal DOFs, form a coarse problem for the FETI-DP
method, and they are chosen such that each of the local subdomain problems becomes regular. In
two dimensions, it is sufficient to choose individual DOFs of the original problem (2) associated
with vertices xh ∈ ΓS as primal DOFs, whereas in three dimensions one needs to add at least
some (subdomain) edge or face averages in order to get a stable method, cf. [36, Sect. 6.4.2].

Some notation: we reorder the DOFs in each subdomain stiffness matrix Ai and group them
into a primal block (subscript Π), a dual block (with the remaining DOFs on the subdomain
boundaries, subscript ∆), and the remaining block of interior DOFs (subscript I). Subassembling
the subdomain stiffness matrices only at the primal DOFs (indicated by a tilde) leads to a global
matrix Ã, i.e.

Ai =

 A
(i)
ΠΠ A

(i)
Π∆ A

(i)
ΠI

A
(i)
∆Π A

(i)
∆∆ A

(i)
∆I

A
(i)
IΠ A

(i)
I∆ A

(i)
II

 , Ã =

 ÃΠΠ ÃΠ∆ ÃΠI

Ã∆Π A∆∆ A∆I

ÃIΠ AI∆ AII

 . (14)

With this notation, we can introduce jump operators Bi analogously to §3.1. However, here
the Bi only operate on the dual DOFs. With B = [B1| . . . |Bs], the resulting saddle point system
reads (

Ã BT

B 0

)(
ũ
λ

)
=
(

f̃
0

)
, (15)

where the vector ũ consists of a primal (global) block, and local blocks that correspond to the
subdomains and are not coupled. The lower right 2 × 2 block of Ã is block diagonal since the
DOFs are separated subdomain-wise. Using the idea of Cholesky factorisation, the action of the
inverse Ã−1 can be performed by solving local problems in the dual and interior DOFs, which
are all regular now (due to the Dirichlet conditions imposed at the primal DOFs), and a coarse
problem in the primal DOFs, whose system matrix is again sparse, cf. e.g. [36, 23]. The resulting
Lagrange multiplier problem reads

FDP λ = dDP , (16)

where FDP := B Ã−1BT . It is solved using conjugate gradients, preconditioned by

M−1
DP :=

∑s

i=1
DiBi S

(i)
∆∆B

T
i Di , (17)
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with the Schur complement S(i)
∆∆ := A

(i)
∆∆ −A

(i)
∆I [A

(i)
II ]−1A

(i)
I∆ eliminating the interior DOFs, and

with the diagonal scaling matrices Di chosen as in §3.1, §3.2.

4.2 Extension of the robustness theory to FETI-DP

As shown in [20], the condition number κDP of the preconditioned FETI-DP system satisfies the
same bound as that of the one-level FETI, namely

κDP ≤ C∗(α)
s

max
i=1

(
1 + log(Hi/hi)

)2
, (18)

where C∗(α) ' 1 , if α is piecewise constant with respect to the subdomains.
The following theorem extends the results of Theorem 3.1 to FETI-DP methods. Since this

is a new result we include a proof. It is heavily based on the proof techniques in [30] and so to
understand it we recommend to the interested reader to first study [30].

Theorem 4.1 ((FETI-DP – without interface variation) ). Under the assumptions made
in §3.2 and with a suitably chosen set of primal DOFs (see below), the condition number κDP

for FETI-DP (with Di as specified in (11)) satisfies

κDP .
s

max
i=1

(Hi

ηi

)µ s
max
j=1

(
1 + log(Hj/hj)

)2
,

with µ = 1, if α̂ ≥ 1, and µ = 2, if α̂ ≤ 1. The hidden constant is again independent of α̂, ε,
Hi, hi, and ηi.

Proof. The following proof is modeled on the FETI-DP proof for piecewise constant coefficients,
given in [20], see also [36], but modifying some of the arguments, in particular using a cut-off
argument [30, Lemma 4.1] and a generalised Poincaré inequality [30, Lemma 4.3]. Here, we give
the proof in the more interesting three-dimensional case; the two-dimensional case requires no
new ideas and works analogously. Also, for the sake of brevity, we restrict ourselves to the case
that the set of primal DOFs consists of the subdomain vertices, edge averages, and face averages
[36, Sect. 6.4.2, Algorithm B]. Other admissible choices such as [36, Algorithm C] can be proved
by combining the techniques therein and those given below.

Let us denote by Wi the space of discrete α-harmonic functions on Ωi that satisfy the essential
boundary conditions, and by W the corresponding product space (functions in W are typically
discontinuous across subdomain interfaces). Moreover, we define the space W̃ to be the subspace
of W of functions that are continuous in the primal DOFs. Furthermore, we introduce the energy
(semi)norm |wi|Si := (

∫
Ωi
α|∇wi|2)1/2 on Wi. We note that the set {δ†i (xh)}, i.e. the diagonal

entries of Di corresponding to the continuity constraint between Ωi and Ωj at xh (cf. (11)),
defines a family of finite element functions on the skeleton ΓS .

Following [36], we can assume (w.l.o.g.) that the space of Lagrange multipliers is equal to
the range of B on W̃ . It then follows that the operators Ã, FDP , and MDP are invertible, cf. [36,
Lemma 6.33]. Introducing the projection

P∆ := BT
D B , where BD := [D1B1| . . . |DsBs] ,

we find that BTM−1
DP B = P T∆S∆∆P∆ with S∆∆ := diag(S(i)

∆∆). And by an algebraic argument
(which works independently of α and of our particular choice of Di, cf. [36, Theorem 6.25]) the
proof of the condition number bound (18) can be reduced to showing that

s∑
i=1

|(P∆w)i|2Si ≤ C∗(α)
s

max
k=1

(1 + log(Hk/hk))2
s∑
i=1

|wi|2Si ∀w ∈ W̃ . (19)
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We will now prove (19) and show that C∗(α) .
(
Hi
ηi

)µ
with µ = 1 or 2.

Due to the structure of the operators Bi and Di one can show that

(P∆w)i(xh) =
∑

j∈N (xh)
δ†j(x

h)
(
wi(xh)− wj(xh)

)
, (20)

for all finite element nodes xh on ∂Ωi. Since α̃(xh) = 1 on all the nodes of ∂Ωi, the functions δ†j
are constant on subdomain faces, edges, and vertices. Here, a subdomain face F ij , i 6= j, is the
open part of Ωi∩Ωj . A subdomain edge E ij is an open set shared by more than two subdomains
(among them Ωi and Ωj). A subdomain vertex V ij is an endpoint of a subdomain edge, cf. [36,
Definition 4.1]. The usual approach is now to split the contributions to P∆w from the sum in
(20) into terms associated with individual subdomain faces, edges, and vertices. Before we do
so, we isolate α̂ from the estimate. Due to [30, Lemma 4.1] we have

|Hα(v)|2Si . |v|2H1(Ωi,ηi )
+ η−1

i ‖v‖
2
L2(∂Ωi)

∀v ∈ Sh(Ωi) , (21)

where Hα(v) denotes the discrete α-harmonic extension of v|∂Ωi to the subdomain interior. The
hidden constant in (21) is independent of α̂. The factor η−1

i stems from the fact that in the
proof we multiply Hα(v) with a smooth cut-off function χ on Ωi that vanishes outside of Ωi,ηi

and that satisfies ‖∇χ‖L∞ . η−1
i .

In order to split into subdomain face, edge, and vertex terms we make use of the functions
θF ij , θEij , and θVij defined in [36, Sect. 4.6], which form a partition of unity on the interface Γ
and are discrete harmonic inside of each subdomain. In particular θF ij equals one on all interior
nodes of the face F ij , and vanishes on the rest of the interface Γ.

We now investigate the contribution to |(P∆w)i|2Si in (19) from the sum of all terms in (20)
associated with the face F ij , namely

ϕFij := (δ†
j |F ij )

2
∣∣Hα(Ih(θFij (wi − wj))

)∣∣2
Si
,

where Ih is the nodal interpolator onto Sh and δ†
j |Fij denotes the constant value of δ†j(x

h) on

F ij . Using (21) and the fact that (under the assumptions of the theorem) δ†j(x
h) ≤ 1, we obtain

ϕF ij . |Ih(θFij (wi − wj))|2H1(Ωi,ηi )
+ η−1

i ‖I
h(θFij (wi − wj))‖2L2(∂Ωi)

. |Ih(θF ij (wi − wj))|2H1(Ωi)
+ η−1

i ‖wi − wj‖
2
L2(Fij)

. (1 + log(Hi/hi))2
{
|wi|2H1(Ωi)

+ |wj |2H1(Ωj)
+H−1

i

(
‖wi‖2L2(∂Ωi)

+ ‖wj‖2L2(∂Ωj)

)}
+ η−1

i ‖wi − wj‖
2
L2(F ij)

. (1 + log(Hi/hi))2
{
|wi|2H1(Ωi,ηi )

+ |wj |2H1(Ωj,ηj ) + η−1
i

(
‖wi‖2L2(∂Ωi)

+ ‖wj‖2L2(∂Ωj)

)}
,

where in the penultimate step we have used [36, Lemma 4.24] and the fact that Hi ' Hj ,
ηi ' ηj , and hi ' hj . In the last step we have used (21) formally for α ≡ 1. Since w ∈ W̃

implies wiF
ij

= wj
Fij with wi

F ij := 1
|F ij |

∫
Fij wi , we can substitute wi − wiF

ij
and wj − wjF

ij

for wi and wj in the derivations above to obtain analogously that

ϕFij . (1 + log(Hi/hi))2
{
|wi|2H1(Ωi,ηi )

+ η−1
i ‖wi − wi

F ij‖2L2(∂Ωi)

+ |wj |2H1(Ωj,ηj ) + η−1
j ‖wj − wj

Fij‖2L2(∂Ωj)

}
.

The edge and vertex contributions can be estimate in a similar way by combining the esti-
mates from [36, Lemma 6.34] with our cut-off argument.
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Now, if α̂ ≥ 1, using a standard Poincaré–type inequality we can conclude that

‖wi − wiF
ij‖L2(∂Ωi) . Hi |wi|2H1(Ωi)

≤ Hi |wi|2Si ,

Since each subdomain has a finite number of subdomain faces, edges, and vertices, this finally
implies inequality (19) with C∗(α) . maxsi=1Hi/ηi.

If α̂ ≤ 1, then we can use the generalised Poincaré inequality in [30, Lemma 4.3] which states
states that ‖wi − wiF

ij‖2L2(∂Ωi)
. H2

i η
−1
i ‖wi‖2H1(Ωi,ηi )

≤ H2
i η
−1
i |wi|2Si . Therefore in this case

we obtain inequality (19) with C∗(α) . maxsi=1(Hi/ηi)2.

Although the above proof is presented for the model problem only, no additional tools are
necessary to apply it also to more general coefficients α as considered in [30, Theorem 3.3] in
the case of one-level FETI. For details see [29].

FETI-DP methods for jumps in α along subdomain interfaces have been proposed in [18].
There, the authors use edge averages, weighted by the coefficient α. However, a theory covering
this case and predicting robustness like in Theorem 3.2 is not yet available.
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