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WEIGHTED POINCARÉ INEQUALITIES

CLEMENS PECHSTEIN1∗ AND ROBERT SCHEICHL2

Abstract. Poincaré type inequalities are a key tool in the analysis of partial differential equa-
tions. They play a particularly central role in the analysis of domain decomposition and multi-
level iterative methods for second-order elliptic problems. When the diffusion coefficient varies
within a subdomain or within a coarse grid element, then condition number bounds for these
methods based on standard Poincaré inequalities may be overly pessimistic. In this paper we
present new results on weighted Poincaré type inequalities for very general classes of coefficients
that lead to sharper bounds independent of any possible large variation in the coefficients. The
main requirement on the coefficients is some form of quasi-monotonicity which we will carefully
describe and analyse. The Poincaré constants depend on the topology and the geometry of
regions of relatively high and/or low coefficient values, and we will study these dependencies in
detail. Applications of the inequalities in the analysis of the geometric multigrid, the two-level
overlapping Schwarz and the FETI methods can be found in [25, 30].

1. Introduction

Poincaré type inequalities are a key tool in the analysis of partial differential equations (PDEs).
They are at the heart of uniqueness results, of a priori and a posteriori error analyses of dis-
cretisation schemes, and of convergence analyses of iterative solution strategies, in particular in
the analysis of domain decomposition (DD) and multigrid (MG) methods for finite element (FE)
discretisations of elliptic PDEs of the type

(1.1) −∇ · (α∇u) = f .

In many applications, such as porous media flow or electrostatics, the coefficient function
α = α(x) in (1.1) is discontinuous and varies over several orders of magnitude throughout the
domain in a possibly very complicated way. Standard analyses of multilevel iterative methods
for (1.1) that use classical Poincaré type inequalities will often lead to pessimistic bounds in this
case. If the subdomain partition in a DD method or the coarsest grid in a MG method can be
chosen such that α(x) is constant (or almost constant) on each subdomain or on each coarse
grid element, then it is possible to prove bounds that are independent of the coefficient variation
(cf. [8, 17, 34, 37]). However, if this is not possible and the coefficient varies strongly within
a subdomain or within a coarse grid element, then the classical bounds depend on the local
variation of the coefficient, which may be overly pessimistic in many cases. To obtain sharper
bounds in some of these cases, it is possible to refine the standard analyses and use Poincaré
inequalities on annulus type boundary layers of each subdomain [13, 24, 26, 29], or weighted
Poincaré type inequalities [11, 25, 30]. See also [7, 9, 12, 14, 16, 22, 28, 39] for related work.

Let D be a bounded Lipschitz domain in Rd where d ∈ {1, 2, 3}. Throughout the paper we
consider coefficients or weight functions α with

α ∈ L∞+ (D) :=
{
α ∈ L∞(D) : inf

x∈D
α(x) > 0

}
.(1.2)
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2 C. PECHSTEIN AND R. SCHEICHL

Such a weight function induces the weighted norm and seminorm

‖u‖L2(D),α :=
(∫

D
α(x) |u(x)|2 dx

)1/2
,

|u|H1(D),α :=
(∫

D
α(x) |∇u(x)|2 dx

)1/2
.

(1.3)

We are interested in finding bounds for the constant CP,α(D) in the weighted Poincaré type
inequality

inf
c∈R
‖u− c‖2L2(D),α ≤ CP,α(D) diam(D)2 |u|2H1(D),α ∀u ∈ H1(D).(1.4)

that are independent of the values that the weight function α takes on D.
Clearly, CP,α(D) depends on the shape of the domainD. However, one easily shows by dilation

that CP,α(D) is independent of diam(D). The infimum in (1.4) is attained when choosing the
constant

c = uD,α :=

∫
D αudx∫
D αdx

,(1.5)

which is the α-weighted average of u over D (cf. e.g. [5], [11, Lemma 4]). This is easily seen from
a variational argument. The functional on the left hand side of (1.4) is convex with respect to
c, and hence the infimum is attained if and only if

0 =
d

dc

∫
D
α |u− c|2 dx = −2

∫
D
α (u− c) dx.

If diam(D) = 1, the best constant CP,α(D) is the inverse of the second smallest eigenvalue of the
generalised eigenvalue problem

−∇ · (α∇u) = λαu in D,(1.6)
α∇u · n = 0 on ∂D,(1.7)

see, for example [12]. For general weight functions α, we can obtain a bound for CP,α(D) in (1.4)
from the usual Poincaré inequality. Let uD := uD,1 be the usual average (cf. (1.5)). Then, it is
easily shown that

‖u− uD‖2L2(D),α ≤ sup
x,y∈D

α(x)
α(y)

CP (D) diam(D)2 |u|2H1(D),α.

where CP (D) = CP,1(D) is the usual Poincaré constant on D. Thus, this bound for CP,α(D)
depends on the global variation supx,y∈D

α(x)
α(y) , and if α is highly variable, this may be very large

and very pessimistic.
We note that although weighted Poincaré inequalities have been investigated a lot in the

literature, estimates of the Poincaré constant CP,α that show certain robustness in α are hardly
known. Chua [4] showed that the weighted Poincaré inequality holds for domains satisfying the
Boman chain condition with weights α from a Muckenhoupt class (i.e., α and α−1 are locally
in some Lebesgue space, see [21]). Chua’s paper is based on the early work by Iwaniec and
Nolder [15], see also [10, 20] for related work. The constant in the Poincaré inequality depends
in general on the weight. A similar result is obtained by Zhikov [38] for weights α ∈ Lr with
α−1 ∈ Ls with 2 d−1 = r−1 + s−1. Also there, the Poincaré constant depends on α. In [5],
Chua and Wheeden provide explicit estimates for the Poincaré constant for the class of convex
domains Ω with weights α that are a positive power of a non-negative concave function. Note
that concavity implies continuity. Recently, Veeser and Verfürth [36] refined these results to star
shaped domains, where the weight function satisfies a certain concavity property with respect to
the central point of the star (see Condition (2.3) in [36] for more details, and see [35] on how to use
these inequalities in (explicit) a-posteriori error estimation). To the best of our knowledge, the
first paper that deals with robust estimates of the weighted Poincaré constant for discontinuous
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weight functions is [11]. There, Efendiev and Galvis show that for piecewise constant coefficients
α, if the largest value is attained in a connected region Ω1 and if all the other regions of constant
α are inclusions of (or at least bordering) Ω1, then CP,α is independent of the values of α, in
particular of possibly high contrast.

In the present paper we want to collect and expand on the results in [11, 25, 27] and present
sharp constants for weighted Poincaré-type inequalities that are independent of the value of the
weight function for a rather general class of coefficients. In Section 2.1, we will define a class of
quasi-monotone piecewise constant weight functions (far more general than in [11]) for which we
can make CP,α(D) totally independent of the values of α. To get bounds for CP,α(D) in (1.4),
we will choose averages over certain manifolds rather than over D. In Section 2.2 we will achieve
similar results for an even more general class of non-constant coefficients. In many applications,
especially in the analysis of MG and DD methods, Poincaré type inequalities are not needed on
all of H1(D) but only for the subset of finite element functions. This restriction allows for a
larger class of coefficients α, where we can show discrete analogues of inequality (1.4). This issue
will be treated in Section 3. Even if the Poincaré constant CP,α(D) can be bounded independent
of the values of α, it will in general depend on the topology and geometry of the partition of
D underlying the piecewise constant weight function. In Section 4, we will work out what this
geometric dependence looks like. Since this issue can be rather complicated in two and three
space dimensions, we present a series of general technical tools and analyse a few exemplary
cases in detail.

Extensions to PDEs/inequalities where α is replaced by an isotropic tensor are straightforward,
whereas the case of anisotropic tensors is substantially harder.

Applications of these novel weighted Poincaré–type inequalities in the analysis of geometric
multigrid, as well as of two-level overlapping Schwarz and FETI domain decomposition methods
can be found in [25, 30].

2. Weighted Poincaré type inequalities in H1

Let us start by considering inequalities for piecewise constant weight functions (Section 2.1).
We will return to more general weight functions in Section 2.2.

2.1. Quasi-monotone piecewise constant weight functions. Let the weight function α ∈
L∞+ (D) be piecewise constant with respect to a non-overlapping partitioning of D into open,
connected Lipschitz polygons (polyhedra) Y := {Y` : ` = 1, . . . , n}, i. e.

D =
n⋃
`=1

Y` and α|Y` ≡ α`(2.1)

for some constants α` . We will drop this condition in Section 2.2.
To simplify the presentation we set H := diam(D) and define for any u ∈ H1(D) and for any

(d− 1)–dimensional manifold X ⊂ D the average

uX :=


1

measd−1(X)

∫
X u ds, if d > 1,

1
measd−1(X)

∑
x∈X u(x) if d = 1, where meas0(X) :=

∑
x∈X 1.

Definition 2.1. Suppose α ∈ L∞+ (D) satisfies (2.1) and `∗ := argmax{α`}n`=1.
(a) We call the region P`1,`s := (Y`1 ∪ Y`2 ∪ · · · ∪ Y`s)◦, 1 ≤ `1, . . . , `s ≤ n, a quasi-monotone

path from Y`1 to Y`s (with respect to α), if the following two conditions are satisfied:
(i) for each i = 1, . . . , s−1, the regions Y`i and Y`i+1

share a common (d−1)-dimensional
manifold Xi,

(ii) α`1 ≤ α`2 ≤ · · · ≤ α`s .
(b) We say that α is quasi-monotone on D, if for any k = 1, . . . , n there exists a quasi-

monotone path Pk,`∗ from Yk to Y`∗ . Let sk denote the length of Pk,`∗ .



4 C. PECHSTEIN AND R. SCHEICHL

*X

1 1 1 1

1111

1 1 1 1

1111

*X

(b) (c) (d)

1

2

31

2

3

4

(a)

1

2

3 7

98

654

*X

2
η

η

Figure 1. The numbering of the regions Y` in these examples is according to the
relative sizes of the weights α` on each region, with the smallest weight in region Y1.
Examples (a–c) are quasi-monotone in the sense of Definition 2.1. In each case a typical
path and a suitable manifold X∗ are displayed. Example (d) is not quasi-monotone.

(c) Let X∗ ⊂ Y`∗ be a (d− 1)–dimensional manifold. For each k = 1, . . . , n, let cX∗k > 0 be
the best constant such that

(2.2) ‖u− uX∗‖2L2(Yk) ≤ cX
∗

k H2 |u|2H1(Pk,`∗ ) ∀u ∈ H1(Pk,`∗)

and set C∗P,α :=
∑n

k=1 c
X∗
k .

Note that the constant C∗P,α in Definition 2.1(c) depends on the choice of manifold X∗ ⊂ Y`∗
and of the paths {Pk,`∗}nk=1. The above definition is a generalisation of the notion of quasi-
monotone coefficients introduced in [8]. In Figure 1(a–c) we give some examples of weight
functions that satisfy Definition 2.1. The coefficient shown in Figure 1(d) fails to be quasi-
monotone.

The following theorem provides a weighted Poincaré inequality for quasi-monotone weight
functions α. The constant in the inequality is C∗P,α from Definition 2.1(c) which is clearly
independent of the values that α takes on D.

Theorem 2.2 (weighted Poincaré inequality – piecewise constant case). Let α ∈ L∞+ (D) be
quasi-monotone on D in the sense of Definition 2.1. Then

inf
c∈R
‖u− c‖2L2(D),α ≤ C∗P,αH

2 |u|2H1(D),α ∀u ∈ H1(D),(2.3)

where C∗P,α is the constant defined in Definition 2.1(c).

Proof. For simplicity, we assume that H = diam(D) = 1. The general case follows from a
dilation argument. We set c = uX

∗ (where X∗ is the manifold chosen in Definition 2.1) and
assume without loss of generality that uX∗ = 0. Otherwise we can set û := u− uX∗ and use the
fact that |û|H1(D),α = |u|H1(D),α.

Let k ∈ {1, . . . , n} be fixed. Then, due to the assumption (2.1) on the weight function α, we
have

‖u‖2L2(Yk),α = αk ‖u‖2L2(Yk) .

Combining this identity with inequality (2.2) and using the fact that the value of α is monoton-
ically increasing in the path from Yk to Y`∗ , we obtain

‖u‖2L2(Yk),α ≤ cX
∗

k αk |u|2H1(Pk,`∗ ) ≤ cX
∗

k |u|2H1(Pk,`∗ ),α ≤ cX
∗

k |u|2H1(D),α .

The proof is complete by adding up the above estimates for k = 1, . . . , n. �

As we can see from the proof of Theorem 2.2, inequality (2.3) does not only hold for the
infimum, i.e. for the weighted average c = uD,α, but also for c = uX

∗ where X∗ may be any
(d− 1)–dimensional manifold in Y`∗ .
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Although the definition of the constant C∗P,α in Definition 2.1(c) suggests that it grows with
the number n of subregions, this is not the case in general. The reason is that on the left hand
side in (2.2), the L2-norm is taken only over Yk and not over the whole path Pk,`∗ . We will
discuss this issue extensively in Section 4. However, we would like to give already at this stage
a general tool, Lemma 2.4 below, on how the inequalities (2.2) are related to more common
Poincaré inequalities on each of the individual subregions Yk.

Definition 2.3. For any bounded Lipschitz domain Y ⊂ Rd, d = 1, 2, 3, and for any (d − 1)–
dimensional manifold X ⊂ Y , let CP (Y ;X) > 0 denote the best constant such that the following
Poincaré type inequality holds:

(2.4) ‖u− uX‖2L2(Y ) ≤ CP (Y ;X) diam(Y )2 |u|2H1(Y ) ∀u ∈ H1(Y ).

Lemma 2.4. Suppose α ∈ L∞+ (D) is quasi-monotone and Pk, `∗ is any of the paths in Defini-
tion 2.1(b) with `1 = k and `s = `∗. For convenience let X0 := X1 and Xs := X∗. Then the
constant cX∗k in Definition 2.1(c) can be bounded by

cX
∗

k ≤ 4
s∑
i=1

meas(Yk)
meas(Y`i)

diam(Y`i)
2

H2
max

{
CP (Y`i ;Xi−1), CP (Y`i ;Xi)

}
.

Proof. By a telescoping argument we have

‖u− uX∗‖L2(Yk) ≤ ‖u− uX1‖L2(Yk) +
s∑
i=2

√
meas(Yk)

∣∣uXi−1 − uXi
∣∣.(2.5)

Estimate (2.4) yields a bound for the first term on the right hand side, i.e.

‖u− uX1‖2L2(Yk) ≤ CP (Yk;X1) diam(Yk)2 |u|2H1(Yk) .(2.6)

For i fixed, we can also conclude from inequality (2.4) that∣∣uXi−1 − uXi
∣∣2 ≤ 2

meas(Y`i)

(
‖uXi−1 − u‖2L2(Y`i )

+ ‖u− uXi‖2L2(Y`i )

)
≤ 4 max

{
CP (Y`i ;Xi−1), CP (Y`i ;Xi)

}diam(Y`i)
2

meas(Y`i)
|u|2H1(Y`i )

(2.7)

(this is essentially a Bramble-Hilbert type argument). An application of Cauchy’s inequality (in
Rs) yields the final result. �

Note that in one dimension, due to Lemma 2.4, the Poincaré constant C∗P,α is O(1) as n→∞,
as the following corollary shows. The situation in two and three dimensions is more complicated
and is left until Section 4.

Corollary 2.5. Let d = 1. If α is piecewise constant with respect to {Y`}n`=1 and quasi-monotone
in the sense of Definition 2.1, then C∗P,α = O(1) as n→∞.

Proof. We assume w.l.o.g. thatD = (0, 1) andX∗ = 1. (Note that in this case quasi-monotonicity
in the sense of Definition 2.1 is equivalent to the usual monotonicity.) Let us assume that
the regions Y` are numbered consecutively from left to right, and that X` := Y ` ∩ Y `+1, for
` = 1, . . . , n− 1, with Xn := X∗. It follows from the Fundamental Theorem of Calculus that

‖u− u(X`−1)‖2L2(Y`)
≤ diam(Y`)−2|u|2H1(Y`)

∀u ∈ H1(Y`) ∀` = 1, . . . , n.(2.8)

Hence, CP (Y`;X`−1) ≤ 1. The same is true, if we replace X`−1 by X`. Since for d = 1 we have
meas(Y`) = diam(Y`), it follows from Lemma 2.4 that

cX
∗

k ≤ 4 diam(Yk)
n∑
`=k

diam(Y`) ≤ 4 diam(Yk) ∀k = 1, . . . , n,

and so C∗P,α ≤ 4 = O(1) as n→∞. �
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Figure 2. Examples of quasi-monotone weight functions in 1D. Cases (a–b)
are quasi-monotone in the sense of Definition 2.1. Case (c) is Γ-quasi-monotone
in the sense of Definition 2.6 with Γ = {X0, Xn}, Cases (d–e) are quasi-monotone
in the sense of Definition 2.8 (see Section 2.2 below).

Note that it was crucial to define cX∗k as done in Definition 2.1. Using a standard Poincaré
type inequality for Pk,`∗ , such as

‖u− uX∗‖2L2(Pk,`∗ ) ≤ CP (Pk,`∗ ;X∗) diam(Pk,`∗)2 |u|2H1(Pk,`∗ ) ,

would lead to a very pessimistic bound for the Poincaré constant in (2.3):

C∗P,α ≤
n∑
k=1

CP (Pk,`∗ ;X∗)
diam(Pk,`∗)2

H2
.

In our 1D example in Corollary 2.5 this would in general lead to C∗P,α = O(n).

An inequality similar to that in Theorem 2.2 holds if u vanishes on part of the boundary of
D. This is sometimes referred to as a Friedrichs inequality.

Definition 2.6. Suppose α ∈ L∞+ (D) satisfies (2.1) and Γ ⊂ ∂D.
(a) We say that α is Γ-quasi-monotone on D, if for all k = 1, . . . , n there exists an index `∗k

and a quasi-monotone path Pk,`∗k (with respect to α) from Yk to Y`∗k , such that ∂Y`∗k ∩ Γ
is a (d− 1)–dimensional manifold.

(b) For each k = 1, . . . , n, let cΓ
k > 0 be the best constant such that

‖u‖2L2(Yk) ≤ cΓ
kH

2 |u|2H1(Pk,`∗
k

) ∀u ∈ H1(Pk,`∗k), u|Γ = 0.(2.9)

and set CΓ
F,α :=

∑n
k=1 c

Γ
k .

Again the constant CΓ
F,α in Definition 2.6(b) is clearly independent of the actual values that α

takes on D. A one-dimensional example of a Γ–quasi–monotone function is given in Figure 2(c).
Note that this function is not quasi–monotone in the sense of Definition 2.1, while the example
in Figure 2(b) is not Γ–quasi–monotone in the sense of Definition 2.6 for any choice of Γ ⊂ ∂D.

Theorem 2.7 (weighted Friedrichs inequality – piecewise constant case). Let Γ ⊂ ∂D and
suppose that α ∈ L∞+ (D) is Γ-quasi-monotone on D in the sense of Definition 2.6. Then

‖u‖2L2(D),α ≤ CΓ
F,αH

2 |u|2H1(D),α for all u ∈ H1(D) with u|Γ = 0,

where CΓ
F,α is the constant defined in Definition 2.6(b).

Proof. The proof is analogous to that of Theorem 2.2. �

For the remainder of this paper we will restict our attention to weighted Poincaré type inequal-
ities (cf. Theorem 2.2), but we remark that there are always analogous statements for weighted
Friedrichs type inequalities (cf. Theorem 2.7) that we will not mention or prove explicitly.
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2.2. General weight functions. In this subsection we digress briefly to discuss more general
non-constant weight functions. To do this we generalise our definition of quasi-monotonicity.
Our bounds are then not completely independent of the values of α, but they will only depend
on the local variation. Finally, we will show that our bounds are in a certain sense sharp.

Definition 2.8. Let Y := {Y`}n`=1 be a non-overlapping partition of D. A weight function α ∈
L∞+ (D) is called (macroscopically) quasi-monotone with respect to Y if the auxiliary piecewise
constant weight function α ∈ L∞+ (D) defined by

α(x) := infy∈Y` α(y) , for all x ∈ Y` ,
is quasi-monotone on D in the sense of Definition 2.1. (For a typical example see Figure 2(e).)

Clearly, Definition 2.8 is a generalisation of Definition 2.1. Any α ∈ L∞+ (D) that satisfies (2.1)
and is quasi-monotone in the sense of Definition 2.1 is also macroscopically quasi-monotone
with respect to Y in the sense of Definition 2.8 with α ≡ α. Moreover, any weight function
α ∈ L∞+ (D) is macroscopically quasi-monotone in the sense of Definition 2.8 with respect to
the trivial partition Y := {D}. However, a finer partition may lead to a better bound for the
Poincaré constant CP,α in the following theorem (which is a generalisation of Theorem 2.2).

Analogously to α let us also define α ∈ L∞+ (D) such that

α(x) := supy∈Y` α(y) , for all x ∈ Y` .

Theorem 2.9. (weighted Poincaré inequality – general case) Let Y := {Y`}n`=1 be a non-
overlapping partition of D and let α ∈ L∞+ (D) be macroscopically quasi-monotone with respect
to Y in the sense of Definition 2.8. Then

inf
c∈R
‖u− c‖2L2(D),α ≤ C∗P,α

∥∥∥∥ αα
∥∥∥∥
L∞(D)

H2 |u|2H1(D),α for all u ∈ H1(D),

where C∗P,α is the constant in Definition 2.1(c) for the auxiliary function α.

Proof. We proceed as in the proof of Theorem 2.2 and assume without loss of generality that
uX
∗

= 0 and diam(D) = 1. Then, using again Theorem 2.2, inequality (2.2) and the quasi-
monotonicity of α, we have

‖u‖2L2(Yk),α ≤ sup
x∈Yk

α(x) ‖u‖2L2(Yk)

≤ sup
x∈Yk

α(x) cX
∗

k |u|2H1(Pk,`∗ ) ≤
supx∈Yk α(x)
infy∈Yk α(y)

cX
∗

k |u|2H1(Pk,`∗ ),α .

Obviously, |u|H1(P`,k),α ≤ |u|H1(P`,k),α , which completes the proof. �

Theorem 2.9 states that the Poincaré constant CP,α depends only on the local variation of
α on each of the subregions Yk ∈ Y. However, since we are free to choose the partition Y,
it is in principle possible to obtain a Poincaré constant that is completely independent of the
variation of α (even for exponentially growing coefficients), by letting n → ∞ – provided α
remains macroscopically quasi-monotone w.r.t. Y as we let n→∞. We would like to illustrate
this in one dimension. The following corollary follows immediately from Theorem 2.9 and the
proof of Corollary 2.5.

Corollary 2.10. Let D = [0, 1] and X∗ ∈ [0, 1]. If α is monotonically non-decreasing on (0, X∗)
and monotonically non-increasing on (X∗, 1), then

inf
c∈R
‖u− c‖2L2(D),α ≤ 4 |u|2H1(D),α ∀u ∈ H1(D).

Theorem 2.9 also shows that we still get good bounds for CP,α, even if we do not have strict
quasi-monotonicity (in the sense of Definition 2.1). An example of this is the case in Figure 1(d)
with α1 = 1, α2 = 10 and α3 � 10. Applying Theorem 2.9 with the partition Y := {Y1 ∪Y2, Y3}
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(instead of Theorem 2.2), the maximum local variation is ‖α/α‖L∞(D) = 10 and so it follows
from Theorem 2.9 that CP,α = O(1) as α3 →∞.

However, the bound in Theorem 2.9 deteriorates when quasi-monotonicity is strongly violated.
For the example in Figure 1(d) it can be shown that

CP,α ≥ c min
{
α2

α1
,
α3

α1

}
(cf. [25, Sect. 3.3]). The next lemma shows that quasi-monotonicity is in fact a necessary condi-
tion for CP,α to remain bounded when the contrast in the coefficient goes to infinity.

Proposition 2.11. Suppose that α ∈ L∞+ (D) satisfies (2.1) and the subregions {Y`}n`=1 are or-
dered such that αn ≥ αn−1 ≥ . . . ≥ α1. If α is not quasi-monotone in the sense of Definition 2.1,
then there exist indices k, j with n > k > j ≥ 1 and a constant C > 0 independent of {α`}n`=1
such that

αk > αj and CP,α ≥ C
αk
αj

,

i.e. CP,α →∞ as αk/αj →∞.

Proof. Clearly,

CP,α ≥ sup
u∈H1(D)

infc∈R ‖u− c‖2L2(D),α

|u|2
H1(D),α

.(2.10)

If α is not quasi-monotone (in the sense of Definition 2.1), then there exist indices k, j with
n > k > j ≥ 1 such that αk = αk−1 = . . . = αj+1 > αj and such that there is no quasi-monotone
path from Yk to Y`∗ = Yn. Let us assume w.l.o.g. that j = k − 1. Otherwise we renumber the
regions. Set

YL := (Y1 ∪ . . . ∪ Yk−1)◦ and YH := (Yk+1 ∪ . . . ∪ Yn)◦.

Then Yk and YH are disconnected. Now choose u∗ ∈ H1(D) such that

u∗|YH = +1, u∗|Yk = −1, and |u∗|2H1(YL) ≤ β.(2.11)

The existence of such a function follows from the inverse trace theorem which yields |u∗|2H1(YL) ≤
Ctr ‖u∗‖H1/2(∂YL∩(∂YH∪∂Yk)) =: β. The trace of u∗ is constant on ∂YH and on ∂Yk. Hence, the
constant β depends only on the region YL.

Now firstly note that

inf
c∈R
‖u∗ − c‖2L2(D),α ≥ inf

c∈R

{
|1− c|2 αk+1 measd(YH) + |1 + c|2 αk measd(Yk)

}
≥ inf

c∈R

{
|1− c|2 + |1 + c|2

}
αk γ = 2 γ αk .(2.12)

where γ := min(measd(YH),measd(Yk)). Secondly, to estimate the weighted H1-norm of u∗ from
above, note first that the gradient of u∗ vanishes on Yk and on YH . And so using (2.11) we can
conclude that

|u∗|2H1(D),α = |u∗|2H1(YL),α ≤ αk−1 |u∗|2H1(YL) ≤ β αk−1 .

which together with (2.10) and (2.12) implies the result with C = 2γ/β. �

3. Weighted Poincaré inequalities for FE functions

In many applications, e.g. in the analysis of multilevel iterative methods for (1.1), it is suffi-
cient to have Poincaré type inequalities for finite element (FE) functions. We will show now that
it is possible to extend the class of weight functions α for which we can obtain weighted Poin-
caré inequalities to include piecewise constant functions α that clearly fall outside the original
definition of quasi-monotonicity in [8] and that of the previous section.
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Hence, for this section let D be a Lipschitz polygonal (polyhedral) domain in R2 (R3) and
let {Th(D)}h∈Θ be a family of shape-regular simplicial triangulations, i.e. there exists a uniform
constant creg > 0 such that for all h ∈ Θ and for all τ ∈ Th(D),

(3.1)
diam(τ)
ρ(τ)

≤ creg ,

where ρ(τ) is the diameter of the largest inscribed ball (cf. Ciarlet [6]). For each h ∈ Θ, we
define the usual space of continuous, piecewise linear finite elements

Vh(D) :=
{
v ∈ C(D) : v|τ affine linear ∀τ ∈ Th(D)

}
.

Let α ∈ L∞+ (D) be piecewise constant again with respect to a non-overlapping partitioning of
D into open, connected Lipschitz polygons (polyhedra) Y := {Y` : ` = 1, . . . , n} such that

D =
n⋃
`=1

Y` and α|Y` ≡ α`(3.2)

for some constants α` . In addition we assume here that α is piecewise constant with respect to
Th(D), so that Th(D) is aligned with Y.

The following lemma is the crucial tool to extend our results to more general coefficients in
the case of FE functions. It requires in addition that restricted to a subregion Y` the family
{Th(D)}h∈Θ is quasi-uniform, i.e. there exists a uniform constant cquasi > 0 such that for all
h ∈ Θ and for all τ, τ ′ ∈ Th(Y`)

(3.3)
diam(τ)
diam(τ ′)

≤ cquasi .

Lemma 3.1. Let Y be a d-dimensional simplex (triangle or tetrahedron) and let {Th(Y )}h∈Θ

be a quasi-uniform family of simplicial triangulations. Suppose x∗ ∈ Y is an arbitrary point,
and if d = 3, let E be an edge of tetrahedron Y . Then there exists a constant C independent of
H = diam(Y ) and h such that for all h ∈ Θ and for all u ∈ Vh(Y ),

‖u− u(x∗)‖2L2(Y ) ≤


C
(

1 + log
(H
h

))
H2 |u|2H1(Y ) if d = 2,

C
H

h
H2 |u|2H1(Y ) if d = 3,

and
‖u− uE‖2L2(Y ) ≤ C

(
1 + log

(H
h

))
H2 |u|2H1(Y ) if d = 3.

Proof. The first two inequalities follow from L∞-estimates in [34, Lemma 4.15 and inequal-
ity (4.16)]. The third inequality is proved in [34, Lemma 4.16]. For an earlier reference see [2].
The constant C depends on the ratio diam(Y )/ρ(Y ) and on the constants creg and cquasi in (3.1)
and (3.3). �

Note, that clearly the dependence of the Poincaré constant on H/h gets weaker as the dimen-
sion of the manifold over which we “average” the function increases. It is linear if the dimension
of the manifold is d− 3, logarithmic if the dimension is d− 2, and it does not depend on H/h at
all if the dimension is d− 1. The last case follows from the discussion in the previous section.

Definition 3.2. Suppose α ∈ L∞+ (D) satisfies (3.2), `∗ := argmax{α`}n`=1 and m is an integer
between 0 and d− 1.

(a) We call the region P`1,`s := (Y`1 ∪ Y`2 ∪ · · · ∪ Y`s)◦, 1 ≤ `1, . . . , `s ≤ n, a type-m quasi-
monotone path from Y`1 to Y`s (with respect to α), if the following two conditions hold:
(i) for each i = 1, . . . , s − 1, the regions Y`i and Y`i+1

share a common m-dimensional
manifold Xi,

(ii) α`1 ≤ α`2 ≤ · · · ≤ α`s .
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(a) (b) (c)

Figure 3. Examples of type-m quasi-monotone weight functions for d = 3 withm ≤ 2
in (a), with m ≤ 1 in (b) and with m = 0 in (c).

(b) We say that α is type-m quasi-monotone on D, if for all k = 1, . . . , n there exists a
quasi-monotone path Pk,`∗ from Yk to Y`∗ .

(c) Let X∗ ⊂ Y `∗ be an m–dimensional manifold, and for each k = 1, . . . , n, let cX∗k > 0 be
the best constant such that for all h ∈ Θ

(3.4) ‖u− uX∗‖2L2(Yk) ≤ cX
∗

k σd−m
(
H
h

)
H2 |u|2H1(Pk,`∗ ) ∀u ∈ Vh(Pk,`∗),

where

(3.5) σj(x) :=


1 if j = 1,
1 + log(x) if j = 2,
x if j = 3.

As before we set C∗P,α :=
∑n

k=1 c
X∗
k .

Clearly a type-m quasi-monotone coefficient α is also type-(m−1) quasi-monotone. In Figure 3
we see some examples. The examples in Figure 3(b–c) are clearly not quasi-monotone in the
classical sense (cf. [8]), yet a discrete version of the weighted Poincaré inequality in Theorem 2.2
can be established even for these coefficients with a constant that does not depend on α.

Theorem 3.3 (discrete weighted Poincaré inequality). Let 0 ≤ m ≤ d− 1 and let {Th(D)}h∈Θ

be quasi-uniform. If α ∈ L∞+ (D) is type-m quasi-monotone on D in the sense of Definition 3.2,
then

inf
c∈R
‖u− c‖2L2(D),α ≤ C∗P,α σ

d−m(Hh )H2 |u|2H1(D),α ∀u ∈ Vh(D).(3.6)

where C∗P,α and σd−m(H/h) are defined in Definition 3.2(c).

Proof. Identical to the proof of Theorem 2.2 using (3.4) instead of (2.2). �

Let us finish this section by analysing again how the inequalities (3.4) are related to inequalities
on the individual subregions Yk.

Definition 3.4. For any bounded Lipschitz domain Y ⊂ D resolved by Th(D), and for any
m–dimensional manifold X ⊂ Y , let CP (Y ;X) > 0 denote the best constant such that for all
h ∈ Θ and for all u ∈ Vh(Y ):

(3.7) ‖u− uX‖2L2(Y ) ≤ CP (Y ;X)σd−m
(diam(Y )

h

)
diam(Y )2 |u|2H1(Y ) .

Lemma 3.5. Suppose α ∈ L∞+ (D) is type-m quasi-monotone and Pk, `∗ is any of the paths in
Definition 3.2(b) with `1 = k and `s = `∗. For convenience let X0 := X1 and Xs := X∗. Then
the constant cX∗k in Definition 3.2(c) can be bounded by

cX
∗

k ≤ 4
s∑
i=1

meas(Yk)
meas(Y`i)

diam(Y`i)
2

H2
max

{
CP (Y`i ;Xi−1), CP (Y`i ;Xi)

}
.
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Proof. The proof follows as for Lemma 2.4 using in addition that σj(x) is a monotonically non-
decreasing function. �

Clearly the constants CP (Y`i ;Xi) in Lemma 3.5 (and thus C∗P,α in Theorem 3.3) are indepen-
dent of {αk}nk=1. However, to bound them independently of Y (i.e., geometric parameters), it
is necessary to require a certain regularity of the subregions Yk. This is technical and will be
discussed in detail in Section 4.

4. Explicit dependence on geometrical parameters

Before going into the technical details, let us suppose that the partition Y = {Y`}n`=1 consists
of a few well-shaped subregions and that all the interfaces Xi between adjacent subregions in
Definitions 2.1 and 3.2 are well-shaped and sufficiently large. Then it follows from classical
results that the constants CP (Y`i ;Xi) and CP (Y`i , Xi−1) in Definitions 2.3 and 3.4 are benign
(in particular, they are independent of Y and h). Thanks to Lemma 2.4 this implies that the
constants C∗P,α in the weighted Poincaré inequalities in Theorems 2.2 and 3.3 are also benign.

If the assumptions above do not hold, then
(i) the number n of subregions may be large,
(ii) the shapes of the subregions Y` may be complicated, in particular long or thin and/or
(iii) the interfaces may be small compared to adjacent subregions.
In Section 4.1 below, we allow the number n to become large, but we restrict ourselves to

shape-regular simplicial partitions Y (such that the situations in (ii) and (iii) are ruled out). We
can then give explicit bounds for C∗P,α in terms of n and H/ηmin, where

ηmin :=
n

min
`=1

diam(Y`),

which is a measure of the “small scale” that the coefficient introduces. In Section 4.2 we generalise
the results to type-m quasi-monotone coefficients. In principal this fully describes the dependence
of C∗P,α on α, since the situations in (ii) and (iii) can always be overcome by further subdividing
some regions until the partition Y is shape-regular. However, this can lead to pessimistic bounds.
Therefore, in Sections 4.3–4.5 we show enhanced bounds for a few distinguished cases including
anisotropic subregions, subregions with holes, as well as a checkerboard distribution.

For the remainder let us restrict to d = 2 or 3 and to piecewise constant weight functions α
satisfying (2.1). To simplify the presentation we write a . b, if a/b can be bounded uniformly
by a constant C that is independent of any parameters, in particular independent of α, Y, H
and h. Furthermore, we write a h b, if a . b and b . a.

4.1. Inequalities for shape-regular partitions. Let Y = {Y`}n`=1 be a conforming simplicial
triangulation of D and define

η` := diam(Y`), η :=
n

max
`=1

η`, ηmin :=
n

min
`=1

η` ,(4.1)

as well as the shape-regularity constant

cYreg :=
n

max
`=1

diam(Y`)
ρ(Y`)

.(4.2)

Recall that a family {Yη}η∈Ξ of simplicial partitions is called shape-regular, if there is a uniform
bound for cYηreg. It is called quasi-uniform, if it is shape-regular and the ratios η/ηmin are uniformly
bounded. With a slight abuse of notation we will call a partition shape-regular or quasi-uniform,
if it is an element of a family of such partitions.

The next lemma bounds the weighted Poincaré constant explicitly in terms of a few geomet-
ric parameters. Recall that for any quasi-monotone α ∈ L∞+ (D) with underlying partitioning



12 C. PECHSTEIN AND R. SCHEICHL

(a)

min
η

(c)(b)

η

η

min

min

Figure 4. Some (more complicated) two dimensional examples with shape-
regular partitions. In each case a corresponding family of partitions is defined by
continuing the fractal structure and therefore halving ηmin. In Case (a) different
colours mean different subregions and the dashed lines indicate how to further
subdivide, in order to obtain a simplicial partition.

{Y`}n`=1 and `∗ = argmax{α`}n`=1, the length of the quasi-monotone path Pk,`∗ from Yk to Y`∗ in
Definition 2.1 is denoted by sk.

Lemma 4.1. Let Y = {Y`}n`=1 be a shape-regular simplicial partition of D and let α ∈ L∞+ (D) be
quasi-monotone with respect to Y (in the sense of Definition 2.1 with X∗ a facet of the simplex
Y`∗). Then

C∗P,α ≤ 2d+1 (cYreg)d−1
n∑
k=1

sk measd(Yk)
H2 ηd−2

min

.

Proof. The proof is based on Lemma 2.4 and we adopt the same notation. We fix k ∈ {1, . . . , n}
and choose a quasi-monotone path Pk,`∗ = (Y`1 ∪ . . . ∪ Y`sk )◦ of length sk. It follows from
Lemma A.1 in the Appendix, that max{CP (Y`i ;Xi−1), CP (Y`i ;Xi)} ≤ 1. Due to Lemma A.2 in
the Appendix,

diam(Y`)2

measd(Y`)
≤ 2d−1 (cYreg)d−1 η2−d

` .

Thus, Lemma 2.4 implies that

cX
∗

k ≤ 4
sk∑
i=1

2d−1 (cYreg)d−1 measd(Yk)
H2

η2−d
`i

.(4.3)

Since d ≥ 2 the result follows from the definition of C∗P,α in Definition 2.1. �

The following corollary gives the worst case scenario.

Corollary 4.2. With the assumptions of Lemma 4.1

C∗P,α . (H/ηmin)2(d−1) .

If we assume in addition that sk . H/ηmin, for all k = 1, . . . , n, i.e. none of the quasi-monotone
paths follows a plane (space) filling curve, then

C∗P,α . (H/ηmin)d−1 .

Proof. Note that
∑n

k=1 measd(Yk) = measd(D) ≤ Hd. Due to shape regularity sk ≤ n .
(H/ηmin)d (at most). Hence, the result follows from Lemma 4.1. �

Obviously, the results above extend straightforwardly to the case of polygonal (polyhedral)
partitions Y, where each subregion Y` consists of a small number of simplices, such that the
resulting simplicial partition of D is shape regular and conforming. In the examples below we
will often make use of this fact.
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min
η

2

4 1

3

34
X

η
minH

Figure 5. Left: Example with shape-regular polyhedral partition, consisting
of a small cube and nested Fichiera corners. Right: Coefficient distribution with
staggered structure. (The largest coefficient is in region Y4.)

Example 4.3. Let d = 2 and consider the three domains shown in Figure 4. Note that in all
three cases the assumptions of Lemma 4.1 are fulfilled, the underlying simplicial partition (only
shown for (a)) is shape-regular, meas2(D) h H2, and ηmin h 2−nH. Since maxnk=1 sk ≤ n .
log2(H/ηmin) in each of these cases, it follows from Lemma 4.1 that

C∗P,α . 1 + log
( H

ηmin

)
.

Remark 4.4. Example 4.3 shows that the (standard) Poincaré constant CP (D) of the two-
dimensional “dumbbell” domain in Figure 4(c) is O(1+log(H/ηmin)). Note that the isoperimetric
constant (often used to bound CP (D), cf. [7, 19, 20]) is O(H/ηmin) and thus yields a pessimistic
bound for CP (D).

Example 4.5. Let now d = 3 and consider the domain in Figure 5 (left) with Y1 being the
small cube in the top corner and the remaining subregions numbered away from Y1, such that
ηk h 2k ηmin.

Let us first consider the case that `∗ = 1, i.e. the largest coefficient is in the small cube. Let k
be fixed, then sk = k and `i = k+1−i. It follows from inequality (4.3) in the proof of Lemma 4.1
that

cX
∗

k .
sk∑
i=1

η3
k

H2
η−1
k+1−i .

sk∑
i=1

4k η2
min

H2

k∑
i=1

2i .
η2

min

H2
8k.

Since n h log2(H/ηmin), we get 8n h (H/ηmin)3 and thus

C∗P,α .
η2

min

H2

n∑
k=1

8k .
H

ηmin
.

If, on the other hand, the largest coefficient value is attained in the largest domain, i.e. `∗ = n,
then for fixed k, we have sk = n− k + 1 and `i = k − 1 + i. And so, using again inequality 4.3
in the proof of Lemma 4.1, we get

cX
∗

k .
n−k+1∑
i=1

η3
k

H2
η−1
k−1+i .

η2
min

H2
4k

n−k+1∑
i=1

21−i .
η2

min

H2
4k . 4k−n ,

where in the last step we used that ηmin h 2−nH. Hence, for any n,

C∗P,α . 1.

In the same way, we can also show that CP,α . 1 for the domains in Figure 4(a) and Figure 4(b),
if the largest coefficient is attained in the largest subregion.
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Note that the examples in this section are not artificial. They arise naturally when interfaces
between perfectly well-shaped coefficient regions are small compared to the size of the regions, see
e.g. Figure 5 (right). This case can often be treated by artificially subdividing some subregions
further in a suitable way.

Example 4.6. Consider the scenario in Figure 5 (right). The quasi-monotone path P3,4 from
Y3 to Y4 contains the interface X3,4 which has diam(X3,4) = ηmin � H. However, subdividing
both Y3 and Y4 further as shown in Figure 4(a) we get as in Example 4.3

C∗P,α . 1 + log
( H

ηmin

)
.

4.2. Inequalities for FE functions on shape-regular partitions. In this subsection, we
generalise the explicit results of the previous section to the discrete case and discuss a few
particularities.

It was important in Section 4.1 that the (d− 1)-dimensional manifold X∗ was chosen to be a
(d− 1)–dimensional facet of the simplex Y`∗ , i.e. an edge in 2D or a face in 3D. In this section,
for type-m quasi-monotone coefficients, we choose X∗ to be an m-facet of the simplex Y`∗ .

Definition 4.7. Let Y = {Y`}n`=1 be a simplicial partition of D. Then each boundary ∂Y` is the
union of

• 0-facets: the vertices of the simplex,
• 1-facets: the edges of the simplex,
• 2-facets: the faces of the simplex (if d = 3).

It is straightforward to extend the results from Section 4.1 to type-m quasi-monotone coef-
ficients, provided the mesh Th(D) resolves the partition Y and is quasi-uniform on each of the
simplices Y`. Doing this carefully we even get an enhanced bound compared to Theorem 3.3.
Let h` := maxτ⊂Y` diam(τ) be the local mesh size on Y` and recall that sk is the length of the
type-m quasi-monotone path Pk,`∗ defined in Definition 3.2.

Lemma 4.8. For d > 1, let Y = {Y`}n`=1 be a shape-regular simplicial partition of D and let
Th(D) be such that its restriction Th(Y`) is quasi-uniform for all ` = 1, . . . , n. If α ∈ L∞+ (D) is
type-m quasi-monotone with respect to Y (in the sense of Definition 3.2) and if X∗ is an m-facet
of the simplex Y`∗), then

inf
c∈R
‖u− c‖2L2(D),α ≤ C∗,mP,α H

2 |u|2H1(D),α ∀u ∈ V h(D),(4.4)

where C∗,mP,α . σd−m
(

n
max
`=1

η`
h`

) n∑
k=1

sk
measd(Yk)
H2 ηd−2

min

. The hidden constant depends on cYreg and on

the constant in Lemma 3.1.

Proof. The proof follows the same lines as that of Lemma 4.1. Let c = uX
∗ . Since cYreg h 1

it follows from Lemma 3.1 that the discrete Poincaré constants CP (Y`i ;Xi−1) and CP (Y`i ;Xi)
are both O

(
σd−m(η`i/h`i)

)
, where σd−m is as defined in (3.5). The result then follows as in the

proof of Lemma 4.1. �

As in Section 4.1, if we exclude pathological examples with type-m quasi-monotone paths Pk,`∗
that follow plane (space) filling curves, Lemma 4.8 yields a worst case scenario of

C∗,mP,α .
( H

ηmin

)d−1
σd−m

(
n

max
`=1

η`
h`

)
.

To apply Lemma 4.1 it was crucial that each Y` in the partition was a simplex. As mentioned
several times, a polygonal (polyhedral) region Y` that is not simplicial can always be artificially
subdivided into a set of simplicial ones. However, it is often difficult to guarantee that a mesh
Th(D) that is aligned with the original partition is also aligned with the artificial simplicial
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subpartition, and we would not want to impose such a condition. The next lemma shows that
for any polygonal (polyhedral) region Y that is the union of a small number of simplices, it
suffices that there exists a quasi-uniform triangulation T̃h(Y ) that is aligned with the simplicial
subpartition of Y and has the same mesh size as Th(Y ), such that the results of Lemma 4.1 hold.

Lemma 4.9. Let Y be the union of a small number of shape-regular and quasi-uniform simplices
T1, . . . , Tp and set H := diam(Y ). Let Th(Y ) be a quasi-uniform simplicial triangulation of Y
(not necessarily aligned with {Ti}pi=1) and let X ⊂ ∂Y be an m-facet of one of the simplices Ti
(note that X is resolved by Th(Y )). Then

‖u− uX‖2L2(Y ) . σd−m
(
H
h

)
H2 |u|2H1(Y ) ∀u ∈ Vh(Y ).

The hidden constant depends on c, on the number of simplices p, on the constant C in Lemma 3.1,
and on the shape-regularity constants of Th(Y ) and {Ti}pi=1.

Proof. It is always possible to refine the simplices T1, . . . , Tp to obtain a quasi-uniform simplicial
triangulation T̃h(Y ) with mesh size h that coincides with Th(Y ) on the boundary ∂Y and that
has a shape-regularity constant which is bounded by the shape-regularity constants of Th(Y )
and {Ti}pi=1. Let Ṽh(Y ) be the corresponding FE space of continuous piecewise linear functions.
Since T̃h(Y ) is aligned with {Ti}pi=1 we can apply Lemma 4.8 (with α ≡ 1) to get

(4.5) ‖u− uX‖2L2(Y ) . σd−m
(
H
h

)
H2 |u|2H1(Y ) ∀u ∈ Ṽh(Y ).

To show that an equivalent statement holds for functions u ∈ Vh(Y ) we make use of the
Scott-Zhang operator from [33] (see also [3]). Let Vh(∂Y ) be the trace space of Vh(Y ), which is
identical to the trace space of Ṽh(Y ). There exists an operator Πh : H1(Y ) → Ṽh(Y ) such that
for all v ∈ H1(Y ) with v|∂Y ∈ Vh(∂Y )

(Πhv)|∂Y = v|∂Y ,(4.6)
‖v −Πhv‖L2(Y ) ≤ Csc h |v|H1(Y ) ,(4.7)

|Πhv|H1(Y ) ≤ Csc |v|H1(Y ) .(4.8)

The operator is constructed by local averages over (d−1)-dimensional manifolds and the constant
Csc only depends on the shape-regularity constant of T̃h(Y ).

Let u ∈ Vh(Y ) be arbitrary but fixed. Then, due to (4.6), Πhu
X = uX and it follows from

(4.5) and (4.7) that

‖u− uX‖L2(Y ) ≤ ‖u−Πhu‖L2(Y ) + ‖Πhu−Πhu
X‖L2(Y )

. h|u|H1(Y ) +
√
σd−m

(
H
h

)
H |Πhu|H1(Y ) .

Clearly, h ≤ H and σd−m(Hh ) ≥ 1, and so the result follows from (4.8). �

4.3. Anisotropic subregions. In this subsection we treat cases where the partition Y contains
anisotropic subregions. We will see that it is often advantageous not to further subdivide this into
a shape regular partition. We start by showing an elementary result for the Poincaré constant
of a parallelepiped.

Lemma 4.10. Let {~ei}di=1 be a (normalised) basis of Rd and let Y be the parallelogram/parallelepiped{∑d
i=1 βi ~ei : βi ∈ (0, Li)

}
. If X is one of the facets (edges/faces) of Y , then

CP (Y ;X) h 1,

and the hidden constant is independent of the aspect ratios Li/Lj and of the angles between ~ei
and ~ej, for any 1 ≤ i, j ≤ d.

Proof. The result can easily be shown by transforming Y to the (isotropic) reference cube Q =
(0, 1)d using the linear transformation F (x) = J−1 x where J = (L1~e1| · · · |Ld~ed). �
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Figure 6. Three model cases of anisotropic domains in two (Case (a)) and
three dimensions (Cases (b) and (c)).

Example 4.11. For any of the regions Y in Figure 6(a–c) and for any (d − 1)–facet X of Y ,
Lemma 4.10 implies

C(Y,X) h 1,
independent of the aspect ratio H/η.

Example 4.12. Let Y be one of the two “annular” subregions shown in Figure 7 (left/middle),
and let X be an edge of length H (left figure) or a face of area H2 (middle figure). Then
CP (Y ;X) h 1. This can be shown by further subdividing the subregions into a few anisotropic
rectangles/cuboids and using Lemma 2.4 (with D = Y and X∗ = X) together with the estimates
in Example 4.11. Such estimates can already be found in [24].

Our next example will be Figure 7 (right), where a piecewise constant coefficient increases
gradually towards an edge of a cube in 3D. To get an optimal bound in this case is surprisingly
difficult. We require a variation of Lemma 2.4.

Lemma 4.13. Let α ∈ L∞+ (D) be quasi-monotone with respect to a partition Y. Let `∗ be the
index of the region where the maximum is attained and let X∗ be a (d− 1)-dimensional manifold
in ∂Y`∗ . For each k = 1, . . . , n, let Xk be a (d− 1)-dimensional manifold in ∂Yk and let Pk,`∗ be
the quasi-monotone path from Definition 2.1. Then,

C∗P,α .
n

max
k=1

{diam(Yk)2

H2
CP (Yk;Xk)

}
+

n∑
k=1

measd(Yk)
measd(Pk,`∗)

diam(Pk,`∗)2

H2

{
CP (Pk,`∗ ;Xk) + CP (Pk,`∗ ;X∗)

}
.

Proof. The proof follows that of Lemma 2.4. Let 1 ≤ k ≤ n be fixed. Then,
1
2 ‖u− u

X∗‖2L2(Yk),α ≤ αk ‖u− uXk‖2L2(Yk) + αk measd(Yk) |uXk − uX
∗ |2

For the first summand, we have

αk ‖u− uXk‖2L2(Yk) ≤ CP (Yk;Xk)
diam(Yk)2

H2
H2 |u|2H1(Yk),α .

The second summand can be bounded in the same way as (2.7) (but with Pk,`∗ instead of Y`i
and with Xk and X∗ instead of Xi−1 and Xi). To conclude the proof we have to use quasi-
monotonicity and sum the two bounds over k. �

Example 4.14. For the scenario in Figure 7 (right), we have

C∗P,α . 1 + log
(H
η

)
.

To see this, we first consider the subdivision {Y`}n`=1 with n h 1 + log(H/η) depicted in Fig-
ure 7 (right) and apply Lemma 4.13 with X∗ one of the long and thin faces of Y`∗ . Clearly,
CP (Yk;Xk) h 1 and CP (Pk,`∗ ;Xk) h 1 because these regions consist of a few cuboids and Xk is
one of its faces. Hence, it remains to investigate CP (Pk,`∗ ;X∗). First we consider the case k = 1,
where P1,`∗ = D.
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Figure 7. Left/middle: “Annular” subregions in Example 4.12 in two and three
dimensions. The smaller cube sketched inside is cut out from the larger cube.
Right: Piecewise constant coefficient distribution increasing gradually towards an
edge in 3D.

In the limit case η → 0, the face X∗ collapses to an edge E of D. Here we can make use of
Lemma 3.1 which can straightforwardly be generalised to cubes. Let Th be an auxiliary quasi-
uniform triangulation of D such that the face X∗ is resolved by just one layer of element faces
(h h η) and let Vh(D) denote the corresponding piecewise linear finite element space. As in
Lemma 4.9 we make use of a Scott-Zhang type quasi-interpolation operator (see [33, 3]), i.e.
there exists an operator Πh : H1(D)→ Vh(D) such that for all v ∈ H1(D),

Πhv
E = vX

∗
,

‖v −Πhv‖L2(D) ≤ Csc h |v|H1(D) ,

|Πhv|H1(D) ≤ Csc |v|H1(D) ,

with a uniform constant Csc. The interpolator is constructed by defining the values at the mesh
nodes by averages over suitable (d− 1)-dimensional manifolds. For the nodes in X∗, we choose
element faces in X∗ such that (Πhv)|X∗ is constant in the direction perpendicular to E, and
so Πhv

E = vX
∗ . We now obtain from the properties of Πh and from Lemma 3.1 that for all

u ∈ H1(D),

‖u− uX∗‖2L2(D) . ‖u−Πhu‖2L2(D) + ‖Πhu−Πhu
E‖2L2(D)

. h2 |u|2H1(D) +H2 (1 + log(H/h)) |Πhu|2H1(D)

. H2 (1 + log(H/h)) |u|2H1(D) .

Hence, since h h η, we get that CP (P1,`∗ ;X∗) . 1 + log(H/η) h n.
Next we investigate Pk,`∗ , for k > 1. Consider the linear transformation from the reference

cube Q̂ to Pk,`∗ . This consists simply in multiplying two of the coordinates by 2−kH−1 and the
remaining one by H−1. Then

‖û‖2
L2( bQ)

=
measd(Q̂)

measd(Pk,`∗)
‖u‖2L2(Pk,`∗ ) and |û|2

H1( bQ)
≤ measd(Q̂)

measd(Pk,`∗)
|u|2H1(Pk,`∗ ) ,

because the spectral norm of the Jacobian is ≤ 1. On Q̂ we can choose a quasi-uniform mesh
with mesh size h h 2−(n+1−k) and apply the arguments from before (with D = Q̂ and H = 1)
to obtain

CP (Pk,`∗ ;X∗) . 1 + log(1/h) h 1 + log(2n+1−k) h n+ 1− k.
Putting all the estimates together finally yields

C∗P,α . 1 +
n∑
k=1

(2−kH)2

H2

(
1 + (n+ 1− k)

)
h

n∑
k=1

4−k(1− n+ k) h n,

where n h 1 + log(H/η).
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Figure 8. Left/middle: Layered coefficient distributions in two and three di-
mensions. Right: Partitioning and quasi-monotone paths for Example 4.17.

Unfortunately, using Lemma 4.13 for the layered coefficient distribution in Figure 8 (left/middle)
leads to a sub-optimal bound C∗P,α . 1 + log(H/η) (that grows with the number of layers). The
following alternative theory to Lemma 2.4 and Lemma 4.13 (first given in the appendix of [24])
leads to optimal bounds even in these cases.

Here, we actually do need to further partition the anisotropic subregions such that {Y`}n`=1 is
simplicial and quasi-uniform. Furthermore, X∗ has to be the union of a subset {Fj}Jj=1 of the
(d− 1)–facets of the simplices Y` (edges for d = 2 and faces for d = 3). For simplicity we assume
that the numbering is such that Yj is the (unique) simplex whose boundary contains Fj , for all
j = 1, . . . , J .

Lemma 4.15. Let Y := {Y`}n`=1 be simplicial and quasi-uniform with mesh size η > 0, and let
X
∗ =

⋃J
j=1 F j such that Fj ⊂ Y j . For any k ∈ I := {1, . . . , n} and j ∈ J := {1, . . . , J}, let

Pk,j be a path from Yk to Yj. Then∫
Fj

∫
Yk

∣∣u(x)− u(y)
∣∣2 dy dsx . sk,j η

d+1 |u|2H1(Pk,j)
∀u ∈ H1(Pk,j),

where sk,j is the length of the path Pk,j.

Proof. Note first that∫
Fj

∫
Yk

∣∣u(x)− u(y)
∣∣2 dy dsx . ∫

Fj

∫
Yk

∣∣u(x)− uFj
∣∣2 +

∣∣uFj − u(y)
∣∣2 dy dsx

. measd−1(Fj) ‖u− uFj‖2L2(Yk) + measd(Yk) ‖u− uFj‖2L2(Fj)
.(4.9)

It follows from Lemma 4.1 (with D = Pk,j and X∗ = Fj) that

‖u− uFj‖2L2(Yk) . sk,j
measd(Yk)
ηd−2

|u|2H1(Pk,j)
.(4.10)

Also, by transformation to the reference simplex we get that

‖u− uFj‖L2(Fj) . η |u|2H1(Yj)
.(4.11)

Substituting these last two bounds into (4.9), the final result follows from the fact that by
assumption measd(Yk) h ηd and measd−1(Fj) h ηd−1. �

Lemma 4.16. Under the assumptions of Lemma 4.15, let α ∈ L∞+ (D) be quasi-monotone with
respect to Y (in the sense of Definition 3.2) and let each Pk,j be quasi-monotone with respect to
α. Then

C∗P,α .
smax rmax η

d+1

measd−1(X∗)H2
,

where smax := max{sk,j : (k, j) ∈ I × J } and
rmax := max

i∈I

∣∣{(k, j) ∈ I × J : Yi ⊂ Pk,j
}∣∣ ,

i.e. the maximum number of times any of the simplices Yi is contained in a path.
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Proof. W.l.o.g. let u ∈ H1(D) with uX∗= 0 be arbitrary but fixed. We now integrate the identity
u(x)2 − 2u(x)u(y) + u(y)2 = (u(x)− u(y))2 over X∗ with respect to x, multiply it by α(y), and
finally integrate over D with respect to y:∫

D
α(y) dy ‖u‖2L2(X∗) − 2

∫
X∗

u(x) dsx
∫
D
α(y)u(y) dy +

+ measd−1(X∗) ‖u‖2L2(D),α =
∫
X∗

∫
D
α(y)

∣∣u(x)− u(y)| dy dsx .

The middle term on the left hand side vanishes since uX∗= 0. Thus,

measd−1(X∗) ‖u‖2L2(D),α ≤
∫
X∗

∫
D
α(y)

∣∣u(x)− u(y)| dy dsx

=
∑
k∈I

∑
j∈J

αk

∫
Fj

∫
Yk

∣∣u(x)− u(y)| dy dsx .

Using Lemma 4.15, quasi-monotonicity and the definitions of smax and rmax

measd−1(X∗) ‖u‖2L2(D),α .
∑
k∈I

∑
j∈J

sk,j η
d+1 |u|2H1(Pk,j),α

≤ smax η
d+1

∑
i∈I

∣∣{(k, j) ∈ I × J : Yi ⊂ Pk,j
}∣∣ |u|2H1(Yi),α

≤ smax rmax η
d+1 |u|2H1(D),α

which concludes the proof. �

Obviously, the statements of Lemma 4.15 and Lemma 4.16 apply also for non-simplicial par-
titions (e.g. quadrilateral or hexahedral), if each region Yi, i ∈ I, consists of a few simplices and
the resulting simplicial mesh is quasi-uniform.

Example 4.17. For the two scenarios in Figure 8 (left/middle), we have

C∗P,α . 1.

We only give the proof for d = 2. The case d = 3 is analogous.
We subdivide each anisotropic region in Figure 8 (left), such that the resulting partition Y

consists of (H/η)2 square regions Yk, as shown in Figure 8 (right). The manifold X∗ (on the top
of ∂D) with measd−1(X∗) = H is the union of H/η edges Fj . By using generic “L”–shaped paths
Pk,j from Yk to Fj as depicted in Figure 8 (right), for any pair (k, j) ∈ I × J , it is easy to see
that (i) each of the paths is quasi-monotone with respect to the given coefficient distribution in
Figure 8 (left), (ii) smax h H/η and (iii) rmax h (H/η)2. Therefore it follows from Lemma 4.16
that C∗P,α . 1.

4.4. Subregions with inclusions. As an example of this type we consider the region depicted
in Figure 1(c) with a large number of square inclusions and choose X∗ to be a boundary edge of
D of length h H.

To bound the weighted Poincaré constant C∗P,α for this case, we treat all the inclusions as one
subregion Y1 and the remainder as Y2. Then, the path P12 = D and so

c∗1 . CP (D,X∗) . 1.

To get a bound for the Poincaré constant c∗2 = CP (Y2;X∗) of the perforated domain Y2 without
the inclusions, we will use Lemma 4.16. It is straightforward to find a quasi-uniform (square)
partition {Ỹi}ni=1 of Y2 with mesh size equal to the diameter η of the holes (see Figure 1(c)). We
construct a (quasi-monotone) path from each region Ỹi to one of the faces Fj ⊂ X∗ by following
(essentially) the same construction as in Example 4.17 (with some small modifications at the
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Figure 9. The checkerboard distribution.

start and at the end of the path). It is easy to see that again smax . H/η and rmax . (H/η)2.
Hence,

CP (Y2;X∗) . 1 and so C∗P,α . 1.

If there are p distinct values in the inclusions, following the same technique we see that

C∗P,α . p.

On first glance this would suggest, that in the worst case C∗P,α . n, but this is not quite
true. Using the concept of macroscopically quasi-monotone coefficients (introduced in Section
2.2) we may combine subregions with weights of similar size, even if they are not connected.
Assume, for example, that the values of α range from α1 = 10−6 to αn = 1, where Yn is now
the perforated (background) region. If we combine all subregions with values in [10−i, 10−i+1]
into one subregion, we have a local variation of 10 in each subregion. Therefore, since there are
6 such combined subregions,

C∗P,α . 60

uniformly, even for n→∞. We note that estimates for C∗P,α for this example have been shown
in [11, Lemma 4], but they depend on the number n of inclusions and are not explicit in the
geometric parameters.

4.5. The checkerboard distribution. Our last type of example is that of checkerboard-type
distributions, as depicted in Figure 9. We will show that the discrete Poincaré inequality (4.4)
for the coefficient in Figure 9 holds with

C∗,mP,α . 1 + log
(η
h

)
.

In a similar way to Lemma 4.16 we can prove the following bound for C∗,mP,α in (4.4) in
Lemma 4.8.

Lemma 4.18. For d > 1, let Y = {Y`}n`=1 be a quasi-uniform simplicial partition of D with
mesh size η > 0, and let Th(D) be a quasi-uniform refinement of Y with mesh size η ≥ h > 0.
If α ∈ L∞+ (D) is type-m quasi-monotone with respect to Y (in the sense of Definition 3.2) and
X∗ is a finite union of type-m facets Fj of the partition Y (not necessarily connected) such that
X
∗ =

⋃
j∈J Fj, then

C∗,mP,α . σd−m
(η
h

) smax rmax η
m+2

measm(X∗) diam(Y )2

where smax and rmax are defined as in Lemma 4.16 for type-(d− 1).

Proof. Recall the notation uX
∗

= 1
meas0(X∗)

∑
j∈J u(Fj) introduced in Section 2.1 for the case

m = 0, where meas0(X∗) =
∑

j∈J 1 and Fj is a type-0 facet, i.e. a point. Similarly, we define∫
X∗ v ds :=

∑
j∈J v(pj).
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Figure 10. Two classes of “dumbbell” coefficient distributions. Dashed lines
indicate variable interfaces for changing η.

With this notation, it is straightforward to follow the proof of Lemma 4.15 and to show that
for any type-m quasi-monotone path Pk,j from Yk to Yj , such that Fj ⊂ Y j , we have∫

Fj

∫
Yk

∣∣u(x)− u(y)
∣∣2 dy dsx . sk,j η

m+2 σd−m
(η
h

)
|u|2H1(Pk,j)

.

The only difference is that we use Lemma 4.8 and Lemma 3.1 to prove the respective inequalities
(4.10) and (4.11) for the (general) type-m case. The rest of the proof is analogous to that of
Lemma 4.16. �

Example 4.19. In the 2D checkerboard example in Figure 9, we assume that the coefficient takes
two values α1 and α2 � α1. We choose X∗ as the union of O(H/η) vertices on the boundary
of D, as shown, and construct type-0 quasi-monotone paths Pk,j from every square Yk ∈ Y to
every vertex Fj ∈ X∗, as shown in the figure. As in Example 4.17 and in Section 4.4, it is easy
to see that these paths satisfy smax . H/η and rmax . (H/η)2, and so, since meas0(X∗) h H/η,
we finally get from Lemma 4.18 that

C∗,mP,α . σ2
(η
h

) H
η

H2

η2

η2

H/ηH2
= 1 + log

(η
h

)
.

5. Numerical results

In this section we compute for some examples approximations of the weighted Poincaré con-
stant CP,α(D) by computing the smallest nonzero eigenvalue of the generalised eigenvalue prob-
lem

Kh uh = λMh uh .

Here Kh is the α-weighted stiffness matrix, Mh is the α-weighted mass matrix and uh is the
coefficient vector of the continuous, piecewise linear finite element approximation uh ∈ Vh(D) to
the corresponding eigenfunction in (1.6)–(1.7) in Section 1 on a suitable mesh Th(D). For the
eigencomputations we have used the LOBPCG algorithm [18] with a factorisation of (Kh+Mh)−1

as a preconditioner. For the latter we have used PARDISO [31, 32].

5.1. “Dumbbell”-type coefficients. Here we study the two “dumbbell”-type coefficient distri-
butions on D = (0, 1)2 shown in Figure 10. In each particular case, a suitable shape-regular
partition {Y`}n`=1 can be found such that the following holds:
Case (a): smax h 1 + log(H/η), and so Lemma 4.1 implies C∗P . 1 + log(H/η).
Case (b): smax h H/η, and so C∗P . H/η.
Figure 11 shows the approximate Poincaré constants for α = 105 inside the dumbbell and α = 1
otherwise. We used a uniform simplicial grid Th(D) with 2 × 512 × 512 elements. As we see
our bounds are sharp and for the considered range of η ∈ [ 1

16 ,
1

256 ], the Poincaré constants are
always bounded by 10 (even for Case (b)).
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Figure 11. Approximate Poincaré constants for the dumbbell distributions in
Figure 10(a)–(b) for different parameters η.

5.2. Checkerboard distribution. In Section 4.5 we have shown that in the case of the checker-
board distribution in Figure 9 the discrete weighted Poincaré constant in (4.4) can be bounded
independent of α by

C∗,mP,α . 1 + log
(η
h

)
.

We can observe this behaviour in Table 1 for the case α1 = 1 and α2 = 105. Keeping η fixed
and decreasing h by a constant factor 1/2 each time, we see a constant additive growth in the
Poincaré constant. Also, when η/h is constant, which corresponds to diagonals in the table, the
Poincaré constant does not change significantly.

ηmin 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512

h = 1/4 0.07344 – – – – – – –
1/8 0.1083 0.05777 – – – – – –

1/16 0.1466 0.0799 0.05339 – – – – –
1/32 0.1852 0.1061 0.07223 0.05189 – – – –
1/64 0.2240 0.1331 0.09518 0.06961 0.05125 – – –

1/128 0.2629 0.1604 0.1191 0.09146 0.06852 0.05095 – –
1/256 0.3017 0.1876 0.1432 0.1143 0.08991 0.06802 0.05080 –
1/512 0.3406 0.2150 0.1674 0.1374 0.1123 0.08921 0.06778 0.05073

Table 1. Discrete weighted Poincaré constants for the checkerboard distribu-
tion for various choices of η and h.

5.3. Layers. To study the scenario in Figure 8 (middle), we choose Ω = (0, 1)3. For n layers

(of equal width) we set α to 105
i−1
n−1 in the i-th layer, where i = 1, . . . , n. On a mesh with

32× 32× 32 elements and varying n from 2 to 32, the computed weighted Poincaré constant is
always 0.0337466, which illustrates that it is completely independent of the number of layers.

5.4. Coefficients growing towards an edge. Here we study Example 4.14, see also Figure 7
(right). We choose Ω = (0, 1)3 and let α grow towards the edge of the cube. Let η denote the
smallest width of the region of the largest coefficient, as in Figure 7 (right). Figure 12 (left) shows
the coefficient distribution for η = 1/32, whereas Figure 12 (right) shows an approximation of
the second eigenfunction of (1.6)–(1.7) for a mesh of 32× 32× 32 elements. The approximated
Poincaré constants for a fixed mesh and varying η are displayed in Table 2.



WEIGHTED POINCARÉ INEQUALITIES 23

Figure 12. Coefficient distribution and second eigenfunction for Example 4.14
for η = 1/32 and h = 1/32.

η 1/4 1/8 1/16 1/32
CP,α 0.0588303 0.0637642 0.0700526 0.0764003

Table 2. Approximate Poincaré constants for Example 4.14 for the fixed mesh
parameter h = 1/32.

Appendix A

Lemma A.1. Let K be a (non-degenerate) d-dimensional simplex (d = 2 or 3) and let F be one
of its facets. Then

CP (K;F ) ≤ 1.
If K is a parallelepiped, then CP (K;F ) ≤ 7/5.

Proof. Veeser and Verfürth have shown that for all v ∈ H1(K):

1
measd−1(F )

‖v‖2L2(F ) ≤
1

measd(K)
‖v‖2L2(K) +

2 diam(K)
νK measd(K)

‖v‖L2(K) |v|H1(K) ,(A.1)

where νK = d for the simplex and νK = 1 for the parallelepiped. See [35, Sect. 4, Remark 4.6,
formula (2.3), and Corollary 4.5]. Due to Payne & Weinberger [23] and Bebendorf [1],

‖u− uK‖L2(K) ≤
diam(K)

π
|u|H1(K) ∀u ∈ H1(K),(A.2)

because K is convex. With the triangle inequality and Cauchy’s inequality,

‖u− uF ‖L2(K) ≤ ‖u− uK‖L2(K) +
√

measd(K) |uK − uF |

≤ ‖u− uK‖L2(K) +

√
measd(K)√

measd−1(F )
‖u− uK‖L2(F )

Using (A.1) and (A.2) in the estimate above yields

‖u− uF ‖L2(K) ≤
diam(K)

π |u|H1(K) +
√
‖u− uK‖2

L2(K)
+ 2 diam(K)

νK
‖u− uK‖L2(K) |u|H1(K)

≤ diam(K)
π |u|H1(K) +

√
diam(K)2

π2 |u|2
H1(K)

+ 2 diam(K)
νK

diam(K)
π |u|2

H1(K)

=
( 1
π

+
√

1
π2

+
2

νK π

)
︸ ︷︷ ︸

:=C

diam(K) |u|H1(K)

For the simplex νK = d ≥ 2 and we get C ≤ 0.96609936 ≤ 1. For the parallelepiped, νK = 1
and so C ≤ 1.17734478 ≤

√
7/5. �
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Lemma A.2. Let T be a (non-degenerate) d-dimensional simplex (d = 2 or d = 3) and let ρ(T )
be the diameter of the largest inscribed ball in T . Then

diam(T )2

measd(T )
≤ 2d−1 diam(T )

ρ(T )d−1
.

Proof. For d = 2, the estimate follows immediately from the well-known formula meas2(T ) =
1
4 ρ(T ) meas1(∂T ) ≥ 1

2 ρ(T ) diam(T ) (recall that ρ(T ) is the diameter of the largest inscribed
circle). For d = 3, we have meas3(T ) = 1

6 ρ(T ) meas2(∂T ). Let {Fi}4i=1 be the four facets of T .
Then, due to the two-dimensional formula above,

meas2(∂T ) ≥
4∑
i=1

1
2 ρ(Fi) diam(Fi).

Apparently ρ(Fi) ≥ ρ(T ) for all i = 1, . . . , 4. Moreover, the diameter of at least two faces equals
diam(T ) and the sum of the diameters of the remaining faces is at least diam(T ), in other words∑4

i=1 diam(Fi) ≥ 3 diam(T ). Summarizing,

diam(T )2

meas3(T )
=

6 diam(T )2

ρ(T ) meas2(∂T )
≤ 6 diam(T )2

3
2 ρ(T )2 diam(T )

= 4
diam(T )
ρ(T )2

.

�
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