Parallel Computing
CM30225
Russell Bradford
2023/24
1. GPUs
CUDA
Memory affects the execution of threads
Thread blocks are scheduled by the hardware on multiprocessors and more than one block can be simultaneously scheduled on a multiprocessor, thus sharing its resources, particularly shared memory and registers
So the pattern of use of shared memory can put a limit on the number of blocks in the grid, thus a limit on the rate of execution
Similarly, there is a limit on the number of threads per block: up to 65536 in one of the above GPUs
2. GPUs
CUDA
GPUs offers a huge amount of processing power at low cost, but in a way that is extremely sensitive to memory access
It is easy to get started with CUDA as it is basically C, but you do have to be very aware of the properties of memory
3. GPUs
CUDA
Modern GPUs support unified memory spaces
This allows you to use a single virtual address space for both host and device memory and not worry which is which (a bit like VSM)
A hidden mechanism copies data between CPU and GPU as necessary
Exercise Is this a good idea?
(Shortly we will see some systems that have physically shared memory)
4. GPUs
Memory
Next, there is the extra problem shared by all coprocessors: memory bandwidth between the main CPU and the coprocessor
Copying data in and out of the GPU is significantly time consuming
So we need to worry about data movement between the GPU and the main CPU
And, if possible, overlap data transfers with GPU and CPU computation
And overlap CPU and GPU computations
5. GPUs
Memory
We often forget that the system also has to copy the code, ie., the kernels, to the GPU memory, too
The cost of this is usually small relative to the cost of copying data, but it’s another reminder that the GPU’s memory is separate from the CPU’s
But a recent trend is to integrate the GPU onto the same package as the CPU (or vice-versa!)
Using lots of transistors!
6. GPUs
Memory
For example, AMD’s Kaveri is a CPU+GPU on the one chip
4 CPU cores and 512 GPU cores that share cache and main memory
Of course, this changes all the memory access vs. compute balances, so needing you to revise your code
This is an example of a Heterogeneous System Architecture (HSA)
7. GPUs
Memory
The idea is more of a symmetry between the CPU and GPU: the GPU is not just a coprocessor
The GPU can now pass tasks back to the CPU to do
Accompanying this is a new low-level virtual architecture HSA Intermediate Layer (HSAIL) that will be used to implement higher-level abstractions like OpenCL
In a similar way, Apple’s M1 architecture has CPU and GPU and memory on the same chip, further confusing the memory vs. compute costs question
8. GPUs
CUDA
Back to CUDA
Here is an example of trivial CUDA code, prog.cu
(Checking return values and tidying up omitted for brevity)
9. CUDA
#include <stdio.h>
__global__ void setarray(int p[])
{
 int k = blockIdx.x * blockDim.x + threadIdx.x;
 p[k] = k*k;
}
int main(void)
{
 int i, *dm, m[1024];
 cudaMalloc(&dm, 1024*sizeof(int));
 setarray<<<16,64>>>(dm);
 cudaMemcpy(m, dm, 1024*sizeof(int),
 cudaMemcpyDeviceToHost);
 for (i = 0; i < 1024; i++)
 printf("m[%d] = %d\n", i, m[i]);
 return 0;
}
10. GPUs
CUDA
This starts 16 blocks, each containing 64 threads, each thread runs the kernel setarray
Each invocation of setarray gets the same pointer to some global memory allocated on the GPU
Each computes a different value for the index k, and each sets a different element of the array
This assignment is a memory bottleneck that will take a relatively long time to complete
11. GPUs
CUDA
CUDA programmers try to mitigate the memory bottleneck by ensuring there are lots of threads
Within a block, a warp of 32 threads is scheduled to run
These run (in SIMD) until they would have to wait for a lengthy memory access to complete: the assignment to p in the example
Rather than simply waiting for the memory, this warp is put aside while the memory access is still progressing and another warp (from this block or another block on the same multiprocessor) is scheduled to run instead
12. GPUs
CUDA
Thus keeping the multiprocessor busy computing
When the memory access has completed, the original warp can be run again
All these scheduling decisions and actions are done by the hardware!
Exercise Compare with hyperthreading as a way of keeping CPUs busy
13. GPUs
CUDA
Thus we want a lot of threads to schedule between as they run then wait for memory
If we don’t have enough threads the cores will be idle during their wait for memory
Ideally each block should have a multiple of 32 threads, whenever possible, to get the most from the multiprocessor
For example, running just 16 threads means half of the warp is lying idle
14. GPUs
CUDA
Additionally, multiprocessors are given whole blocks to execute
So we want at least as many blocks as multiprocessors, to keep all the hardware busy
Thus it’s good to have lots of threads per block and lots of blocks per multiprocessor to provide lots of choice of warps to schedule
15. GPUs
CUDA
How many blocks and how many threads per block?
It depends on how the program accesses memory: e.g., the use of shared resources like block shared memory might be a factor
16. GPUs
CUDA
From the NVIDIA documentation:
· How many blocks?
· At least one block per SM to keep every SM occupied
· At least two blocks per SM so something can run if block is waiting for a synchronization to complete
· Many blocks for scalability to larger and future GPUs
· How many threads?
· At least 192 threads per SM to hide read after write latency of 11 cycles (not necessarily in same block)
· Use many threads to hide global memory latency
· Too many threads exhausts registers and shared memory
· Thread count a multiple of warp size
· Typically, between 64 and 256 threads per block
17. GPUs
CUDA
The programmer might want to experiment to find the best combination of numbers of blocks and threads per block for the particular GPU they are running on
There are profiling tools and spreadsheets available to help you make this decision
And to add to the complexity: later versions of CUDA allow multiple different kernels to run concurrently (i.e., it schedules between kernels), so supplying more blocks and more threads to keep the hardware busy
CUDA kernels run asynchronously from the CPU
18. GPUs
Memory Coalescence
And the pattern of global memory access is vital, too
The memory bus has a high latency, but a large bandwidth
We have to wait a long time for bytes to arrive; but then they arrive in large chunks
Memory is set up to deliver, say, 64 bytes at a time (512 bit bus)
And programs often ask for large chunks of data in parallel, e.g., working in parallel on an array
64 bytes is 16 (half-warp) four-byte integers or 16 single precision floats
So a warp could be satisfied by just two reads
19. GPUs
Memory Coalescence
[image: Pics/vectorread2.svg]
x = p[me]
If the reads are nicely arranged, a single read supplies many cores simultaneously: this is memory access coalescence (as discussed earlier in vector architectures)
20. GPUs
Memory Coalescence
As long as your code can do this
There are many rules imposed by the hardware to make this kind of memory access coalescence work
Such as alignments of areas of memory; the order in which neighbouring cores access memory; and so on
If you get it right, reading 16 integers in parallel is as fast as reading a single integer
If you get it wrong, it can be 16 times as slow
21. GPUs
Memory Coalescence
[image: Pics/coalesce1.svg]
x = p[16*me]
[image: Pics/coalesce2.svg]
x = p[16*me]
[image: Pics/coalesce3.svg]
x = p[16*me]
22. GPUs
Memory Coalescence
In this case, it might be faster to read coalesced chunks of memory into the block shared memory, and then have cores read their values from there
Awkward coding, but this is how you can get good performance
23. CUDA
#include <stdio.h>
__global__ void setarray(int p[])
{
 int k = blockIdx.x * blockDim.x + threadIdx.x;
 p[k] = k*k;
}
int main(void)
{
 int i, *dm, m[1024];
 cudaMalloc(&dm, 1024*sizeof(int));
 setarray<<<16,64>>>(dm);
 cudaMemcpy(m, dm, 1024*sizeof(int),
 cudaMemcpyDeviceToHost);
 for (i = 0; i < 1024; i++)
 printf("m[%d] = %d\n", i, m[i]);
 return 0;
}
24. GPUs
CUDA
Back to the example: dm is the address of a chunk of memory on the device
The device memory is separate from the CPU memory, so we need special functions to allocate memory on the device
And we need explicit copies to get the data in and out of the coprocessor
25. GPUs
Memory
As always, data copies are time consuming, so we want to minimise them relative to computation time
We are used to the idea that the overhead can be so large that it is faster to do a computation sequentially on the CPU rather than send it to the GPU
The reverse is also true: if the data are on the GPU, it can be faster overall to use one of the wimpy GPU cores for a computation rather than copy back and forth to the CPU
This kind of computation vs. data movement judgement happens a lot when programming GPUs
26. GPUs
CUDA
In this example, we have only 16 blocks, so this would not be so good for a coprocessor with, say, 20 streaming multiprocessors
Real code would either simply have more blocks, or would interrogate the device to see how many multiprocessors it has and adjust accordingly
Exercise but you wouldn’t want more than 32 blocks in our small example. Why?
27. GPUs
GPUs are becoming an ever more important method of computation
Even in phones: ARM’s Mali GPU now has OpenCL support
GPUs are good for phones as they give a good amount of processing power for only a small amount of energy used
28. GPUs
OpenCL
OpenCL takes a wider view of computation than CUDA
While CUDA is explicitly about GPU computation, OpenCL tries to abstract away from the hardware and provide the programmer with a generic programming interface, independent of the underlying hardware
It tries hard not to assume there is a GPU coprocessor specifically, but just some “compute resource” coprocessor
OpenCL is provided as a library that is callable from standard C (and other languages), thus not needing a special compiler
29. GPUs
OpenCL
Things that CUDA has special syntax for (in particular kernel setup and launch) are done via normal function calls in OpenCL
OpenCL kernel code is kept in separate files from the C/C++ CPU code
Kernel code is read, compiled and executed by calling functions in the CPU code
Much like the shader code in OpenGL and the like
30. GPUs
OpenCL
In being generic, it is harder to use than CUDA, which does one thing well
CUDA can produce fast code, particularly if tuned to the specific hardware
But the hardware must be an NVIDIA card
Current OpenCL compilers produce code that runs universally but at sometimes uninspiring speeds (so code still needs the machine-specific tuning that OpenCL was supposed to avoid)
And there are features in the OpenCL programming model that reveal that the designers were still thinking of GPUs underneath the supposed genericity
rId55.svg

	

	

	

	

	

 core

 core

 core

 core

 core

 p

 x=p[0]

 x=p[1]

 x=p[2]

 x=p[3]

 x=p[4]

rId58.png

rId63.svg

	

 core

 core

 core

 core

 core

 x=p[0]

 p

rId66.png
(=) (=

rId67.svg

	

 core

 core

 core

 core

 core

 p

 x=p[16]

rId70.png
= EEE

—

rId71.svg

	

 core

 core

 core

 core

 core

 p

 x=p[32]

rId74.png
(=) (=

