Parallel Computing
CM30225
Russell Bradford
2023/24
1. Topics: GPUs
Graphics co-processors have grown immensely in power in the last few years
Originally intended to offload graphical work from the main CPU they have become recognised as powerful processors in their own right and people have tried to tap into their potential
General-Purpose computing on Graphics Processing Units (GPGPU) has emerged as an important example of parallel processing
So hardware, originally intended to support gamers, is now being used in general purpose computations
GPU-based computing appears strongly in the Top 500 largest computers in the world
2. GPUs
GPUs naturally do certain things very well: in particular data-parallel pixel rendering (colouring, shading and so on)
The computations you typically do on pixels can be quite intensive, but are fairly restricted in nature
And the data-parallel nature of the computations on the millions of pixels on your screen is very relevant
Over time GPUs became more and more programmable as they needed to do more and more complex manipulations
Graphics libraries (like OpenGL and DirectX) that were originally developed to draw pictures eventually supported programmable sequences of operations via shader languages such as GLSL and HLSL (aka Cg)
3. GPUs
So people soon realised that GPUs are powerful multicore SIMD processors, but just tuned for certain intensive data-parallel computations
GPU companies like NVIDIA and AMD/ATI have seen the possibilities of using this power and now put hardware into their GPUs specifically to help GPGPU computations
This means putting in hardware to support generic computation, not just graphics oriented stuff
4. GPUs
And NVIDIA have also produced a language, Compute Unified Device Architecture (CUDA), to aid in the general programming of these devices
There is also an open standard, Open Computing Language (OpenCL), that is not vendor based
CUDA is quite popular right now, but only runs on NVIDIA cards
OpenCL is strong, and is supported by NVIDIA, AMD, Intel and ARM amongst others
5. GPUs
CUDA
CUDA looks a lot like C and C++
Dangerously close, as there are several important differences between CUDA and these languages
CUDA is a modified C/C++ with a syntactic addition to notate parallel execution and various semantic additions to support parallelism
It requires a special compiler, provided by Nvidia
In contrast, OpenCL is a library that runs on plain C or C++ (and any other language that can call C functions)
6. GPUs
Architecture
The language reflects the hardware architecture
A GPU has several multiprocessors each containing a bunch of SIMD cores: thus a GPU is a MIMD of SIMD
It works best when there are thousands of threads, even if there are only hundreds of cores
This is to overlap communications with computation: a core that would be waiting for some data can pick up another thread and work on it instead on doing nothing
Memory access in GPUs is relatively very slow, so there would be a lot of waiting otherwise
7. GPUs
Architecture
Threads in a GPU are hardware managed and extremely lightweight, meaning they have tiny creation and scheduling overhead
Thus there is no need to worry about making and destroying large numbers of threads
Very different from normal CPU threads
Exercise Why don’t normal CPUs do the same: have hardware support for threads?
8. GPUs
Architecture
GPUs have very complicated architectures, both for threading and memory
We shall describe them using CUDA terminology
OpenCL has a separate set of words for the same things
9. GPUs
CUDA
There is a hierarchical management of the threads
· A kernel is some code running on the device (GPU)
· A grid is the collection of all threads in a kernel
· A grid contains one or more thread blocks
· A thread block contains a number of threads: all blocks in a grid contain the same number of threads
All threads in a grid execute the same kernel
These are not all SIMD, but are arranged in bunches, called  warps, of SIMD threads within the blocks
NVIDIA calls this “Single Instruction Multiple Thread” (SIMT)
10. GPUs
CUDA
For example, threads 0–31 are in one warp and 32–63 are in another warp
Warps are the basic SIMD chunk
This means it is better to gather threads that take the same branches of an if or loop as they will be processed together:
if (threadid < 32) {...} else {...}
is better than
if (threadid % 2 == 0) {...} else {...}
11. GPUs
CUDA
A block (of multiple warps) is the basic chunk that gets scheduled on a multiprocessor; the multiprocessor then executes the warps, as many as it can at a time as the hardware permits
While threads within a warp are SIMD, separate blocks of threads might be executed at different times: a kind of SPMD of SIMD, though the SPMD nature is generally not really usable
Warps within a block might be executed at the same time or at different times depending on the number of cores per multiprocessor and the number of schedulers per multiprocessor
12. GPUs
CUDA
Having many warps and many blocks means the system can adapt at runtime to the number of multiprocessors available in the hardware
Suppose we have 8 blocks in our grid
13. GPUs
CUDA
[image: Pics/blocks.svg]
Processing CUDA blocks
This naturally and automatically obtains more parallelism when there are more multiprocessors. So it makes sense to have lots more blocks than multiprocessors
14. GPUs
CUDA
All the blocks in a given grid have the same number of threads
Blocks are indexed in the grid in one, two or three dimensions (programmer’s choice)
blockIdx.x returns the block index for a 1D arrangement
blockIdx.x and blockIdx.y return the block indices for a 2D arrangement
blockIdx.x, blockIdx.y and blockIdx.z return the block indices for a 3D arrangement
You specify the size and number of dimensions when creating the grid
15. GPUs
CUDA
The threads within a block are indexed in one, two or three dimensions
· threadIdx.x
· threadIdx.x, threadIdx.y
· threadIdx.x, threadIdx.y, threadIdx.z
You specify the size and number of dimensions of the blocks when creating the grid
16. GPUs
CUDA
Each thread has its own CPU-style state and registers used in the normal way for function local variables and temporary results; the hardware has a fixed number of registers (32768, say) which are shared amongst the threads in a block
Each thread has a chunk of slow local memory (__local__)
This is accessible only by the thread
Registers are what you need to use if you want fast access, but registers are limited in number, and __local__ memory might be needed if the compiler can’t fit the data into registers
17. GPUs
CUDA
Each block has a chunk of fast shared memory (__shared__)
This is accessible by all the threads in the block and can be used to communicate between threads in a block
18. GPUs
CUDA
A grid has a big chunk of slow global shared memory
This is accessible to all the threads in all the blocks and is the way to communicate between threads in different blocks
Importantly, access to each of these areas of memory is at radically different speeds
Access to registers is a bit faster than block shared memory (a few cycles to access); both are much faster than global shared and thread local memory (hundreds of cycles to access)
So you need to take care on where you place data
19. GPUs
CUDA
A typical CUDA source program contains a mix of code to be run on the CPU and code to be run on the GPU
This can be in the same source file: GPU kernels are marked by __global__
The code is pretty much normal C/C++, but with some restrictions
Note, when executing, code and data on the GPU are separate from code and data on the CPU
Values are passed from CPU to GPU as arguments of CUDA kernel calls; or as explicit cpu-memory-to-gpu-memory copies
20. GPUs
CUDA
CUDA has dimension types that are used to specify sizes and shapes of grids and blocks
dim3 B(w, h, d) defines B to be a 3D  shape object
dim3 G(n, m) defines G to be a 2D  shape object
Just use an integer for 1D
21. GPUs
CUDA
If fun is a kernel (i.e., GPU function), we can call it from the CPU code by
fun<<<G,B>>>(arg1, arg2, ...);
to run fun on a grid containing blocks arranged as G; the blocks containing threads arranged as B
This creates  threads, each running fun
(And copies the code for the kernel to the GPU; copies the argument values to the GPU; starts the GPU scheduler; and so on)
22. GPUs
CUDA
Each thread is uniquely indexed by threadIdx and blockIdx and can use these values to decide what to do
You can choose dimensions and sizes of grids and blocks to suit your problem: you should not be shy of 1000s of threads
In fact, one of the issues when writing a CUDA program is figuring how to choose your blocks and distribute your data amongst them
For example, the amount of shared memory per block is very limited, so this may affect how you choose blocks
23. GPUs
Properties of a typical gamer’s card (2020):
	name
	’GeForce RTX 3080’

	totalGlobalMem
	10GB

	maxThreadsPerBlock
	1024

	maxRegistersPerBlock
	65536

	clockRate
	1.44 GHz

	multiProcessorCount
	68 processors

	CoreCount
	8704 (128 per multiprocessor)

	warp size
	32 threads

	processing:
	25 TFlop single

	
	783 GFlop double (1/32)

	power
	320W


24. GPUs
Properties of a compute oriented GPU card (2015):
	name
	’GeForce GTX K20X’

	totalGlobalMem
	6039339008

	sharedMemPerBlock
	49152

	maxThreadsPerBlock
	1024

	maxRegistersPerBlock
	65536

	maxThreadsDim
	1024 x 1024 x 64

	maxGridSize
	2147483647 x 65535 x 65535

	clockRate
	0.73 GHz

	multiProcessorCount
	14 processors

	CoreCount
	2688 (192 per multiprocessor)

	warp size
	32 threads

	processing:
	3935 GFlop single

	
	1310 GFlop double (1/3)

	power
	235W


25. GPUs
December 2017: NVIDIA Titan V
	CUDA Cores
	5120

	Tensor Cores
	640

	Transistors
	21.1 billion

	Power
	250W

	Single precision
	12.4 TFLOPS

	Double precision
	6.1 TFLOPS

	Half precision
	24.6 TFLOPS


Half precision they call “deep learning FLOPS”
Tensor cores are specialised to  matrix half-precision fused multiply add () computations, also for AI
26. GPUs
CUDA
The main point of GPUs is they have a large number of cores: the RTX 3080 above has 8704 cores in 68 multiprocessors
27. GPUs
CUDA
There is a lot of global memory, but this is substantially slower (100s of cycles to access) than the block shared memory (maybe 2 cycles)
Though modern GPUs do cache global shared memory: access time is a couple of cycles for a cache hit (though the cache is of limited size, of course)
There is also a chunk of global constant memory (__constant__), which is read-only but faster to access than the read-write global memory
And some read-only texture memory, whose development arose from the needs of graphics
28. GPUs
CUDA
Constant memory is actually a different way of accessing global memory, but the mechanism (to make it fast access) limits the amount of constant memory available, e.g., to 64K bytes
Similarly texture memory is global memory accessed in a strange way, via a texture reference object
A texture reference can be associated with an area of global memory and then that memory is read via the reference
29. GPUs
CUDA
The weird stuff:
· the index into the texture memory is a floating point number: the value at index 3.14142, say, is interpolated appropriately by the hardware between the values for indices 3 and 4
· the index can be normalised to the interval 0.0 to 1.0. Then the index 0.5 corresponds to the index half-way along the array
· this can be done for 1, 2 or 3 dimensional arrays
It is possible to ignore the clever stuff and just use textures as a fast(er) way to read global memory
30. GPUs
CUDA
	
	Speed
	Access
	Scope
	Size
	Lifetime
	

	register
	v fast
	r/w
	thread
	10s
	thread
	

	local
	slow
	r/w
	thread
	GBs
	thread
	

	shared
	fast
	r/w
	block
	KBs
	block
	

	global
	slow
	r/w
	grid
	GBs
	application
	

	constant
	cached
	r
	grid
	KBs
	application
	

	texture
	cached
	r
	grid
	KBs
	application
	


N.B. the thread, block and grid/kernel lifetimes are typically all the same; a typical application will have many kernel calls
rId40.svg
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
	 


 

 

 
 Time

 2 multiprocessors

 4 multiprocessors




rId43.png
A





