Parallel Computing
CM30225
Russell Bradford
2023/24
1. More on Threads
We return to the idea of threads
POSIX threads is just one example of many different approaches to threads
And just one example of the many different kinds of threads
2. TBB
We shall look briefly at Threading Building Blocks (TBB) as it contains some interesting ideas
It is a standard C++ template library, needing no specific compiler support
It provides things like concurrent containers and concurrent operations as well as the usual atomics and synchronisations
3. TBB Concurrent Operations
#include <tbb/tbb.h>
#include <iostream>

using namespace tbb;
using namespace std;

void hi(int n) {
 cout << "hello: " << n << endl;
}

int main() {
 parallel_for<int>(0, 10, hi);

 return 0;
}
4. TBB Concurrent Operations
Though you quickly realise you should have written
std::mutex m;

void hi(int n) {
 m.lock();
 cout << "hello: " << n << endl;
 m.unlock();
}
But not a single pthread_create in sight!
5. TBB Concurrent Containers
Containers are things like vectors, queues and hash tables
You have to take care over concurrent access to these as pushing value to a stack at the same time as another thread is popping a value is an easy route to races
Thus TBB provides safe datastructures that get the details right (we hope!)
6. TBB Work Stealing
The interesting thing about TBB is that is uses work stealing to manage parallelism
In something like a parallel_for there are a lot of tasks to be scheduled across the available threads
Each thread has a queue of tasks that are ready to be run (actually a double ended queue, or deque)
When a new task is spawned it is pushed onto the end of the spawning thread’s queue
(“Spawn” is the terminology for creating a new task)
7. TBB Work Stealing
When a thread completes a task it pops a task off the end of its queue and runs that next
That is, the most recently created task for that thread
If its queue is empty, the thread steals a task off the start of another thread’s queue and runs that
That is, the oldest created task for that thread
Thus keeping all threads busy as long as there are tasks to do
8. TBB Work Stealing
Note that pushing and popping a task off your own queue is a relatively cheap operation, so the overhead is kept small for this case, which you hope is the common case
In other words, when there is no opportunity for more parallelism as every thread is already busy doing its own tasks, the overhead is minimal
The overhead of stealing a task is greater, but this only happens when a thread would otherwise be idle and has time to spare
9. TBB Work Stealing
So: if a thread has work to do it does its most recently created task first, thus preserving locality of execution: the next task executed is “nearest” to one just finished
And if a thread has nothing to do it takes the oldest task off another thread, thus disrupting its locality as little as possible
Exercise It’s much more complicated than this, of course. Read about the details
Exercise Work though how work stealing might execute the parallel_for example
10. TBB
Benefits of TBB:
· easy-to-write parallelism (for a good C++ programmer)
· is very flexible and extensible (e.g., parallel_for works for any type that you can iterate over)
· purely a library, so you can use a standard compiler
· and is easy to update with new versions of the library
· it provides sophisticated constructs like pipelines and general graph parallelism
· contains a large number of features
11. TBB
Drawbacks:
· the code needs some reasonably advanced C++ constructs (e.g., functors) get the most benefit
· little checking on the correctness of your use of the constructs: it provides mechanism but no analysis
· it is tied to C++
· and thus not easily interoperable with other languages
· contains a large number of features
Exercise Read about the large number of other features that TBB provides, particularly ranges for load balancing
12. Cilk Plus
Cilk Plus also has a task-based view of computation (like TBB), rather than thread based
This means the programmer thinks about what tasks need to be done, and Cilk Plus thinks about the best way of assigning those tasks to threads
It targets roughly the same area as OpenMP
And similar to OpenMP, the number of threads used and the threading mechanisms are mostly hidden from the programmer
13. Cilk Plus

int fib (int n) {
 if (n < 2) return n;
 int x, y;
 x = cilk_spawn fib(n-1);// fork
 y = fib(n-2);
 cilk_sync; // join
 return x+y;
}
(from the Cilk Plus website)
14. Cilk Plus
· Cilk Plus has just three main keywords: cilk_spawn, cilk_sync and cilk_for
· So is much simpler than OpenMP
· And more lightweight to use
· And seemingly less flexible: but Cilk Plus provides other mechanisms for more advanced control
· Ignoring the keywords leaves a valid equivalent sequential C program
A cilk_for indicates a parallelisable for loop
There is an implicit cilk_sync at the exit of every function that contains a spawn
15. Cilk Plus
Cilk Plus also employs work stealing of tasks, but in a more subtle way than TBB
In the code
cilk_spawn fun1(); fun2();
the current thread actually starts executing fun1()
16. Cilk Plus
In more detail:
· when the current thread reaches the cilk_spawn it saves the current continuation (i.e., the point in the code just before the fun2()) on its continuation stack
· it then starts executing fun1()
· when done with that, it pops the continuation stack and starts executing what it finds there: fun2() in this example
17. Cilk Plus
An idle other thread can steal a continuation and start executing it
Thus leading to the initially surprising behaviour that fun2() might get stolen, not fun1()
In contrast with TBB, where the current thread pushes fun1() and so it is that that can be stolen
TBB implements child stealing;
Cilk Plus has continuation stealing
18. Cilk Plus
Manipulating continuations is why Cilk Plus needs compiler support. Child stealing as implemented by TBB is implementable in C++ directly as it is essentially just pushing and popping functions on a queue
The difference is that continuation stealing has better memory use patterns than the child stealing and so tends to give more efficient parallelism
Exercise Child stealing can have unlimited memory use, while continuation stealing does not. Read about this
19. Cilk Plus
Whatever the relative merits, OpenMP and Thread Building Blocks have wide recognition while Cilk Plus is quite niche
In fact, Intel now has deprecated Cilk Plus in favour of their TBB, which being a purely library-based mechanism is easier to support, despite being potentially worse in runtime behaviour
Exercise Read about the many other parts of Cilk Plus, such as vector sections
Exercise Work through how continuation stealing might execute the parallel_for example
Exercise Compare Cilk Plus, OpenMP, and TBB
20. Cilk Plus and OpenMP
Exercise Later versions of OpenMP supports tasks, which are quite similar in use to Cilk Plus:
int fib(int n) {
 if (n < 2) return n;
 int x, y;
#pragma omp task shared(x)
 x = fib(n-1);
 y = fib(n-2);
#pragma omp taskwait
 return x+y;
}
Read about tasks, and compare with Cilk Plus
21. Yet More Threads
We now give, as an alternative view to POSIX, a sketch of how threads are natively supported in a few languages, though this could be argued to be more properly in the “design of a language” part of the unit
First, C++
22. C++ Threads
While C++ can use POSIX threads it has defined — as part of the language specification — its own threads
Which are often implemented on top of POSIX threads, but are more C++ in the way they are used
The C++ specification replicates the usual primitives, including thread creation, mutexes, condition variables and so on, but tidying things up a bit to make them more ergonomic and C++-like
Described as “a restricted/simplified subset of POSIX functionality”
23. C++ Threads
#include <iostream>
#include <thread>
#include <mutex>
#include <string>

std::mutex mut;

void show(const std::string msg, int *n) {
 std::cout << msg << " ";
 // create a lock guard object on the mutex; ownership of
 // the guard is the lock
 std::lock_guard<std::mutex> lock(mut);
 *n += 1; // protected critical region
}
// lock guard deleted at end of scope by
// normal C++ destructor method; thus releasing lock
24. C++ Threads
int main() {
 int m = 0;

 std::thread thr1(show, "hello", &m);
 std::thread thr2(show, "world", &m);

 thr1.join();
 thr2.join();

 std::cout << "\nm = " << m << "\n";

 return 0;
}
25. C++ Threads
Producing
hello world
m = 2
or
world hello
m = 2
26. C++ Threads
C++ threads, while mostly similar to POSIX, are closely tied into the rest of the design of C++, thus certain behaviours are better defined
For example, it is not clear how C++’s exception mechanism interacts with POSIX threads, while C++ threads specify a behaviour
And they are portable even if there is no (or poor) POSIX support, e.g., Windows
27. C Threads
In a similar way, the C11 standard for C also has some language support for threads, though it is optional and not universally supported, e.g., not supported by MS at the moment
It defines types thrd_t, mtx_t, cnd_t and so on
It is essentially pthreads with everything that might be non-portable across all architectures removed
C++ threads are widely used, but C11 threads are not, even though they are supported by gcc and clang
Perhaps ingrained use of pthreads, or lack of perception of benefit of using C11 threads?
Exercise Read about threads.h and stdatomic.h
28. Java Threads
Next: Java. It’s all based on objects, of course
There are two basic ways to create threads in Java:
· as an instance of a subclass of the Thread class
· by providing a method for the Runnable interface
29. Java Threads
public class Hello extends Thread {
 public void run() {
 System.out.println("Hello world!");
 }
 public static void main(String args[]) {
 Hello t = new Hello();
 t.start();
 }
}
Your classes need to be subclasses of the Thread class
The initial function is the run method, which will be called when we execute start inherited from Thread
A thread can be created, but won’t start running until we invoke its start method: sometimes separating creation from execution is useful
30. Java Threads
This way is somewhat constricting in use, as it requires you to design your classes around the Thread class
So Java gives an alternative way by providing a Runnable interface, which you can add to your existing classes
31. Java Threads
public class Hello implements Runnable {
 ...
 public void run() {
 System.out.println("Hello world!");
 }
 public static void main(String args[]) {
 Thread t = new Thread(new Hello());
 t.start();
 }
}
Runnable requires a run method
The new instance of our class is passed to the Thread constructor, which has a start method as before
32. Java Threads
There are join methods on Thread that wait for thread completion: join() and join(long ms) and join(long ms, int ns)
Simply returning from main waits for threads (actually: non-daemon threads)
Explicitly calling System.exit does not wait
33. Java
Java also has higher-level support for parallelism in constructs like parallel streams that run concurrently
These fall into the class of “sequential code using parallel operations written by someone else”
Though they still have the problem of being non-trivial to use correctly
Exercise Read about Akka, a Scala/Java framework for concurrency based on actors
34. Python
And Python…
Python was designed without parallel support, and typical implementations of the Python interpreter are strongly not-parallel
Python supports concurrency, but not parallelism
35. Python
From the docs:
The Python interpreter is not fully thread-safe. In order to support multi-threaded Python programs, there’s a global lock, called the global interpreter lock or GIL, that must be held by the current thread before it can safely access Python objects. Without the lock, even the simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously increment the reference count of the same object, the reference count could end up being incremented only once instead of twice.
36. Python
So, practically speaking, doing anything in Python is necessarily wrapped by a lock
You can get some benefit from using process-based parallelism (import multiprocessing), where each process has its own separate Python interpreter, but this is quite heavyweight
The best approach is to call parallel library code written in C, for example
37. JavaScript
JavaScript is another language that has single threaded interpreters
Exercise Read about how it uses Web Workers to provide parallelism
38. Go
Go (Golang) has its own kind of threads
Here threads are called goroutines, and are very lightweight (minimal creation overhead) and are managed by the Go runtime
Note the management is by the Go runtime, not the OS
The Go runtime gets parallelism by scheduling the goroutines across OS threads
Creating new goroutines is very easy — actually encouraged — and you can create “1000s” of goroutines
And it is OK for them to be short lived
39. Go
Creating a new goroutine:
go fun(x+y, x-y)
evaluates the arguments and then creates a new asynchronous goroutine running fun with the values of those arguments
40. Go
However:
· Go provides no particular protection against races; it does provide mutexes and so on, but the programmer must remember to use them (or avoid sharing mutable state)
· the runtime that manages the goroutines is quite complex, so Go is less amenable to small or embedded systems
· Go is a garbage collected language, so has that complexity in the runtime, too, e.g., having to stop all threads during a GC
Exercise Find out about the current state of Go with regards to GC and parallelism
41. Go
Go is a well-designed, popular language, but in terms of parallelism is stuck in the mindset of taking a sequential language and adding parallelism and hoping things will be OK
Parallelism is not an add-on!
All these languages (Go, C++, Java, C, etc.) provide mechanism, but no (or insufficient) analysis for concurrency
