Parallel Computing
CM30225
Russell Bradford
2023/24
1. Parallel Algorithms
Dining Philosophers
Another old and famous problem: the Dining Philosophers
Often used to illustrate problems of resource contention in operating systems, it can be used to help understand problems in concurrency, too
2. Parallel Algorithms
Dining Philosophers
[image: Pics/dinphil.svg]
Dining Philosophers
We have five philosophers wanting to eat spaghetti, but there are only five chopsticks to go round
3. Parallel Algorithms
Dining Philosophers
The life of a philosopher is
· think
· sit
· take chopsticks
· eat
· drop chopsticks
· leave
· repeat
4. Parallel Algorithms
Dining Philosophers
A philosopher sits at any free position, but can only use the two neighbouring chopsticks
They require two chopsticks to be able to eat!
If a chopstick is already in use, the philosopher must wait until it is free
5. Parallel Algorithms
Dining Philosophers
This problem shows
· mutual exclusion of the chopsticks
· deadlock if all the philosophers sit down simultaneously and grab the left chopstick: they will all then have to wait on their right chopstick
· starvation, as four of the philosophers might conspire to keep out the fifth
6. Parallel Algorithms
Dining Philosophers
Mutual exclusion of the chopsticks is easily provided by having a mutex for each chopstick
lock chopstick[5];
Then philosopher grabbing and dropping the chopsticks is
lock(chopstick[i]);
lock(chopstick[(i+1)%5]);
eat();
unlock(chopstick[(i+1)%5]);
unlock(chopstick[i]);
7. Parallel Algorithms
Dining Philosophers
But, as we know, this can deadlock if all philosophers grab (say) the left chopstick simultaneously
Simply alternating left-then-right grab with right-then-left grab won’t fix it; neither will picking a random chopstick first
The classical solution is to have a counting semaphore, initialised to 4, to limit the number of simultaneously sitting philosophers
8. Parallel Algorithms
Dining Philosophers
lock chopstick[5];
place = make_counting_semaphore(4);
...
philosopher(int i) {
 while (1) {
 think();
 wait(place);
 lock(chopstick[i]);
 lock(chopstick[(i+1)%
 eat();
 unlock(chopstick[(i+1)%
 unlock(chopstick[i]);}
 signal(place);
 }
}
9. Parallel Algorithms
Dining Philosophers
Exercise Prove this cannot deadlock
Exercise Think about fixing starvation
Exercise Solve the Dining Philosophers using monitors
Exercise Solve the Dining Philosophers using GCD
10. Parallel Algorithms
Sorting
We now turn to some concrete examples of parallel algorithms, beginning with sorting
Clearly, a merge sort is amenable to divide and conquer
· divide data into two equal chunks
· recursively merge sort each half in parallel
· merge the two sorted lists together
11. Parallel Algorithms
Sorting
For example, . The division is trivial, so we concentrate on the merge:
	
	
	
	
	
	
	
	
	
	

	3
	1
	4
	1
	5
	9
	2
	6
	
	

	
	3
	1
	4
	5
	9
	2
	6
	2
	4

	
	1
	3
	4
	2
	5
	6
	9
	4
	2

	
	1
	2
	3
	4
	5
	6
	9
	8
	1

	
	
	
	
	
	
	Total:
	14
	

 is the time to merge sort that line; the number of processors
12. Parallel Algorithms
Sorting
It is easy to calculate the time this takes on values (PRAM: assume we have enough processors and ignore communications costs)
· The last merge takes time
· The step before takes time (twice, in parallel)
· The step before takes time (four times, in parallel)
· etc.
Total time is
13. Parallel Algorithms
Sorting
The sequential merge sort takes time , giving a speedup of

using processors (in this case)
This increases with , but not very quickly, and is a lot smaller than
It uses processors, for an efficiency of

The efficiency drops to 0 as gets large
14. Parallel Algorithms
Sorting
If we have just processors, this becomes

as we have sequential merge sorts of chunks of size , plus steps to merge them in parallel
We get

for large and fixed
Exercise Work this example through for yourself
15. Parallel Algorithms
Sorting
So: for a fixed number of processors we can get good a speedup, but if we let the number of processors get large our relative speedup gets quite poor
Seems counterintuitive until you think about it, but it means we have to have lots of data relative to the number of processors to get a good speedup
Alternatively: if we have a lot of processors, most of them are going to be idle most of the time: we only use all of them in the first step; and even fewer in subsequent steps
Exercise Think about this result in the context of Amdahl and Gustafson
16. Parallel Algorithms
Sorting
The most famous sequential sort (after bubble) is quicksort
Similar to mergesort, in that it is a divide and conquer method, but different in how it divides
· pick a value, the pivot, from the data
· partition the data into two chunks: values bigger than the pivot; values less than the pivot
· recursively quicksort the two chunks
· return the sorted lower chunk; the pivot; the sorted higher chunk
17. Parallel Algorithms
Sorting
The partition phase is a bit fiddly to parallelise, but the recursive sorts are clearly parallelisable
It works well with manager/worker: as each sub-partition is created it becomes a new task
Also, the tasks are entirely independent with no communications between them once created
Though we do need to join the sorted partitions back together
18. Parallel Algorithms
Sorting
Parallel quicksort is very similar in time complexity to mergesort: it takes time with processors in the average case
And time with processors
As usual, quicksort relies on decent pivots: this translates directly to the need to get good load balancing of the sub-tasks
19. Parallel Algorithms
Sorting
Heapsort: another (sequential) sort, is valued as it has very stable behaviour: no bad cases
But there doesn’t seem to be a good way of parallelising it as the swaps in the heap creations and destructions need to pass in unpredictable ways through the entire dataset
20. Parallel Algorithms
Sorting
Bucket sort parallelises well: this splits the data into several buckets, then recursively sorts the buckets
Example. Sorting CDs. Have one bucket per letter of the alphabet. It is quick to put CDs in the correct buckets
Clearly, an extension of the merge sort, it has very similar properties
21. Parallel Algorithms
Sorting
Parallel sorting algorithms exist that take parallel time , but require processors: very inefficient
Other sorts exist that take time time and processors: sounds better?
Some of these you need to be sorting upwards of items to be faster than simpler sorts with apparently worse complexities, like the bitonic sort, with time
22. Parallel Algorithms
Sorting
The bitonic sort, a divide and conquer method somewhat related to merge sort and shell sort, takes time on processors
It takes sequentially, so having a speedup of
This sounds good, until you realise this is a parallelisation of a slightly sub-optimal sequential sort
Comparing against a fast sort, we see bitonic has speedup ; still not too bad
But the important thing is that it is practical for realistic sizes of
Exercise Go and read up on bitonic sort
23. Parallel Algorithms
Sorting
And there are many other sorts
The literature for parallel sorts is huge, as it is a problem that is easy to understand, but hard to solve
Particularly when you start to factor communications costs into your time complexities
24. Parallel Algorithms
Sorting
Exercise It has been claimed that MapReduce can sort “a petabyte of data in a few hours”. Find out about how it does this
Exercise Related to sorting is the problem of finding the maximum value in a dataset. Discuss how this might be parallelised and its time complexity
Exercise Then find the middle value in a dataset
25. Parallel Algorithms
Searching
The other classical problem is searching
This is very datastructure dependent, but can parallelise very well
For example, if the data are spread over many machines, searching for an item is as simple as getting each machine to search its chunk
When any machine finds the item, they can all stop
Or, if multiple results are wanted, there can be a reduce step
26. Parallel Algorithms
Searching
If the data is distributed sensibly over processors, the chunks will be of size and take time to search for a naı̈ve linear search
Thus parallel searching can give perfect speedup
But linear search is far from a good sequential search
Again, we get a good speedup since we start from a poor place
27. Parallel Algorithms
Searching
Searching in a tree takes time , so if we can perfectly distribute sub-trees across processors, we can search them in parallel time for a speedup
Sounds good? Well, consider the speedup for large :

Here the problem is that tree search is so good that the benefit you get from spreading it across processors is small, and gets smaller as the dataset increases in size
28. Parallel Algorithms
Searching
And these algorithms rely on everything being nice and uniform and randomly accessible and ignoring communications costs
For example, if the searches cluster around the data on a single machine, we could write a sequential search that takes advantage of that fact, and our parallel search would not be much faster
29. Parallel Algorithms
Searching
Also, the datastructure must be able to be evenly spread
Lists and trees, that have restrictions on the order you access their elements, are harder to access in this random manner
Of course, Google does this in a big way, using MapReduce, showing that searching petabytes of data can be done in fractions of a second
Again, we find that parallelism allows us to go bigger, rather than faster
30. Parallel Algorithms
Reduction
Next: parallel reduction
Reduction has a natural parallelisation using a tree
[image: Pics/treereduce.svg]
Tree reduction sum
Reducing a list of values using summation (read bottom up)
[image: Pics/treereduce3.svg]
Tree reduction maximum
Reducing a list of values using maximum
31. Parallel Algorithms
Reduction
This takes steps to reduce values, using processors
Sequential time: operations, giving speedup

This is not much less than , as grows only slowly with
32. Parallel Algorithms
Reduction
Efficiency

which slowly drops as increases
33. Parallel Algorithms
Reduction
For processors, divide the data into chunks of size
Time to reduce a chunk (sequential):
Time to reduce the chunks:
Total

34. Parallel Algorithms
Reduction
Speedup

which approaches as gets large
Likewise, the efficiency approaches for large
Similar to previous examples, if you allow yourself an indefinite number of processors, the speedup will be greater, but at a high cost, i.e., low efficiency
For a fixed number of processors, you get a fixed bound on the speedup, but you will be using the hardware very efficiently as the dataset get large
rId22.svg

rId25.png

rId82.svg

 1

 2

 3

 4

 5

 6

 7

 0

 1

 5

 9

 13

 6

 22

 28

 +

 +

 +

 +

 +

 +

 +

rId85.png

rId86.svg

 3

 6

 2

 5

 0

 7

 1

 4

 4

 5

 7

 6

 5

 7

 7

rId89.png

