Parallel Computing
CM30225
Russell Bradford
2023/24
1. Parallel Algorithms
Fork and Join
The next general structuring method to look at is fork and join
We have seen this before, as it is just the superstep
[image: Pics/superstep.svg]
Superstep
Of course, we would like to make the sequential parts between the forks as small as possible
2. Parallel Algorithms
Fork and Join
This is quite popular, as many problems decompose this way
For example, multiply two matrices together then add in a third matrix
The processing forks to multiply the matrices using parallel sub-tasks, then joins after that
We could use barriers between the two phases
3. Parallel Algorithms
Fork and Join
Take care not to confuse the structure of fork and join with the creation and joining of threads
“Fork and join” describes the concurrency in the execution, not the mechanism for execution
We might want to do the sub-tasks provider/consumer, or manager/worker or thread pool or whatever
It is very unlikely we would want to use pthread_create and pthread_join every time
4. Parallel Algorithms
Pipelines/Systolic
Another structuring method we have seen before is the pipeline, also called systolic array
[image: Pics/pipeline2.svg]
Pipeline
Input data is transformed by several separate stages by several separate processors
A well-balanced pipeline (eventually) gives perfect speedup and efficiency
5. Parallel Algorithms
MapReduce
Finally, for now, we look at another concept imported from the functional style: MapReduce
This is a combination of a map and a reduce, and is a kind of divide and conquer
A map takes a function and a structure (a list or vector or tree or whatever) of data, and applies that function to each element in the structure
As long as there is no interference between the items of data, this is trivially parallelisable: stick different items of data on different processors and execute the function on each
6. Parallel Algorithms
MapReduce
The reduce step then gathers together all the sub-results and merges them together to produce the required answer
Depending on what kind of reduction we require, this can be extensively parallelised, too
E.g., the merge in a parallel sum being done in a tree-like way
E.g., the merge of URLs that result from a Web search can be done similarly, perhaps a sort in order of relevance
Other reductions might be less or more parallelisable
7. Parallel Algorithms
MapReduce
For example, given a vector of numbers compute the sum of the squares of the values
Map: do the squares in parallel
Reduce: add them together in parallel
8. Parallel Algorithms
MapReduce
Another example: Web search. The data is distributed in chunks across many machines
Map: a machine searches its own chunk
Reduce: merging and sorting the partial results
MapReduce is much used by Google for their various services, not just searching
9. Parallel Algorithms
MapReduce
This clearly scales well to huge systems!
This is helped a lot helped by the source data being stationary and sending the map function to the machine that hosts the data: a reversal of the way we normally think about things
MapReduce also copes well with less than 100% reliability of the hardware
10. Parallel Algorithms
Aside: Reliability
A quick word on reliability: modern machines are pretty reliable and we are not used to them breaking down too often
Huge clusters are a different proposition entirely
When you have 100s of thousands of machines in your system, you must plan for one to break down in the middle of your computation!
So another issue large systems and the algorithms that run on them have to contend with is machines failing
11. Parallel Algorithms
Aside: Reliability
For example, you might want to run the same sub-task on more than one processor for reliability: if one breaks you’ll still get the result
At one point Hector, a UK academic cluster, was having a failure rate of one node per day
12. Parallel Algorithms
Classical Problems
We now turn to look at a few classical problems that are used to illustrate the issues that arise in designing parallel programs
The first is readers/writers, which looks at synchronisation in the shared use of data, in, for example, a database
Some processes may want to simply read data, a reader
Others might want to read and then update data, a writer
To ensure consistency in the data, a writer must have exclusive access to the database
(A simplification of reality, if you know anything about databases)
13. Parallel Algorithms
Readers/Writers
When there is no writer using the database, any number of readers can access it simultaneously
Note, as a consequence of exclusive access, a writer cannot access the database while there is any reader using it
One solution is to use simple primitives
14. Parallel Algorithms
Readers/Writers
int readers = 0;
rlock = make_lock(); // protect readers
wsem = make_semaphore(1);// sync writers

void reader() void writer()
{ {
 lock(rlock); wait(wsem);
 readers++; ... write ...
 if (readers == 1) wait(wsem); signal(wsem);
 unlock(rlock); }
 ... read ...
 lock(rlock);
 readers--;
 if (readers == 0) signal(wsem);
 unlock(rlock);
}
15. Parallel Algorithms
Readers/Writers
The rlock is to protect the count of the number of readers
The wsem synchronises the readers and writers: a writer must wait until all readers have left, and a reader must wait until a writer has left
if (readers == 1) wait(wsem); the first reader in sets the write semaphore
if (readers == 0) signal(wsem); the last reader out releases the semaphore
This works, but has a problem
16. Parallel Algorithms
Readers/Writers
The problem is that this code is unfair in the way it treats readers and writers
A writer can be excluded for an arbitrarily long time while readers come and go
· reader 1 arrives and sets the wsem
· a writer arrives; it waits on wsem
· reader 2 arrives; it can continue
· reader 1 leaves
· reader 3 arrives; it can continue
· reader 2 leaves
· and so on
17. Parallel Algorithms
Readers/Writers
This is called readers’ preference
The continuing stream of readers conspire to keep out the writer: the readers never signal the wsem
With low probability, but it happens
This is starvation of the writer
18. Parallel Algorithms
Readers/Writers
We might try to fix the writer starvation by having a writer pending count, and have readers wait if there is a writer (or some suitable number of writers) waiting
Exercise Do this
But now we have a writers’ preference and readers can be starved
19. Parallel Algorithms
Readers/Writers
Making this fair for both readers and writers is harder than you think
Though having a readers’ preference is not as bad as you might think, as typical code has more reads than writes
Exercise Go and read up on the many suggested solutions to readers/writers
Exercise Read about the POSIX pthread_rwlock
Exercise Read about read-copy-update (RCU) and its choice of compromises
Exercise Think about how you might use GCD queues
20. Parallel Algorithms
Producers/Consumers
The next classical problem looks at how two or more processes can communicate: passing data between processes
For example, how a manager might feed data to a worker
[image: Pics/prodcon1.svg]
Producer/Consumer
If the producer sends directly to the consumer, this would require a synchronisation between them for every data item
And it would require the consumer to process data at the same rate as the producer produces it (as in a pipeline)
Exercise Compare with MPI
21. Parallel Algorithms
Producers/Consumers
So, typically, there is a buffer between them
[image: Pics/prodcon2.svg]
Buffered Producer/Consumer
This is just some area of memory in a shared memory system; or a message queue for a distributed memory system
22. Parallel Algorithms
Producers/Consumers
The advantage is that we can decouple the producer and consumer
· each can work at their own rate, until the buffer fills or empties
· there is less synchronisation, thus less waiting around
· the producer and consumer are now working asynchronously: not synchronising on every message
23. Parallel Algorithms
Producers/Consumers
When the producer produces data, it writes it into the next free place in the buffer
Unless the buffer is full, when the producer must wait until a place becomes free by the consumer reading some data
Symmetrically, when the consumer want to consume data, it reads it from the next position in the buffer
Unless the buffer is empty, when the consumer must wait until some data arrives by the producer writing it
So there is synchronisation, but only when necessary, dictated by the size of the buffer
We need to see how to manage this synchronisation
24. Parallel Algorithms
Producers/Consumers
For example, a buffer of size 1, using two semaphores, called empty and full
 empty = make_semaphore(1);
 full = make_semaphore(0);
producer() { consumer() {
 produce data wait(full);
 wait(empty); take from buffer
 insert in buffer signal(empty);
 signal(full); consume data
} }
25. Parallel Algorithms
Producers/Consumers
A simple extension to a buffer of size is to use counting semaphores data and free with free initialised to
 free = make_counting_semaphore(n);
 data = make_counting_semaphore(0);
producer() { consumer() {
 produce data wait(data);
 wait(free); remove from buffer
 append to buffer signal(free);
 signal(data); consume data
} }
26. Parallel Algorithms
Producers/Consumers
But this works only if appending to and reading from the buffer are independent operations
In this code as written, the producer and consumer might be acting simultaneously on the buffer: we need to make sure the update does not have a data race
So, for example, might want a lock on the buffer, or make sure the buffer can otherwise safely support a simultaneous read and write (e.g., for a hash table this might be difficult)
27. Parallel Algorithms
Producers/Consumers
And things get more interesting when there is more than more producer, or more than one consumer
[image: Pics/prodcon3.svg]
Multiple Produces/Consumers
28. Parallel Algorithms
Producers/Consumers
Now concurrent access to the buffer is really a problem
We might use a lock to do this
 free = make_semaphore(1);
 data = make_semaphore(0);
 buffy = make_lock();
producer() { consumer() {
 produce data wait(data);
 wait(free); get_lock(buffy);
 get_lock(buffy); take from buffer
 insert in buffer free_lock(buffy)
 free_lock(buffy); signal(free);
 signal(data); consume data
} }
29. Parallel Algorithms
Producers/Consumers
Exercise Prove that this cannot deadlock
Using one lock means that we cannot insert into the buffer at the same time as reading from it
This is often an unnecessary restriction, e.g., the buffer is an area of memory where we can read one element at the same time as writing a different one
Again, this might not be possible if the buffer was some more sophisticated kind of datastructure
30. Parallel Algorithms
Producers/Consumers
So, often we have two locks, one for the insert position and one for the remove position
And we have to be careful when they coincide, e.g., when the buffer is full or empty
31. Parallel Algorithms
Producers/Consumers
Implementations of buffers tend to be either
· linked lists (unbounded size)
· fixed arrays, used circularly
In any case, the buffers are usually actually queues, namely first in first out
32. Parallel Algorithms
Producers/Consumers
More advanced use of queues is possible
If you have just one producer, you can implement a lockless insert into the queue: namely the insert end does not need a lock (or other synchronisation mechanism)
The “gap” between testing for a space in the buffer and inserting is not a problem as no-one else is inserting data
You still have to think carefully about the interaction of this with the removal of data
33. Parallel Algorithms
Producers/Consumers
Symmetrically, if there is just one consumer, it is possible to have a lockless read
These require extremely careful programming, but can be useful in reducing overheads
Consequently, it is possible to implement a single producer/single consumer entirely lock-free
Exercise Find out how to do this (it involves memory barriers!)
rId20.svg

rId23.png

rId30.svg

	

	

	

	

rId33.png

rId66.svg

	

 Producer

 Consumer

rId69.png

rId72.svg

	

	

 Producer

 Consumer

 buffer

rId75.png

rId88.svg

	

	

	

	

	

 buffer

 Producers

 Consumers

rId91.png

