Parallel Computing
CM30225
Russell Bradford
2023/24
1. Vector and Array Processors
Back to the SIMD architecture: now is the point where need to talk about an interesting feature of SIMD processing
The main feature of SIMD is that all processors are doing the same thing…
… so how can conditionals work?
Here is an example, written using a fictional SIMD C
2. Vector and Array Processors
Suppose we have a get_proc() function (“get processor number”) that returns the index of the processor:
int me;
me = get_proc();
...
This allows us to distinguish between processors; the value of me is different on each processor
We could use me to index into a vector, so each processor operates on a different element
v[me] = (v[me - 1] + v[me + 1])/2.0;
3. Vector and Array Processors
So what does this code do?
int me, n;

me = get_proc();

if (me > 512) {
 n = 1;
}
else {
 n = -1;
}
4. Vector and Array Processors
Instinctively you think it sets n in processors above 512 to 1 and in the other processors n is set to -1
And this is what it does do
But a SIMD machine executes the same code in all processors, so how can it execute the n = 1 assignment on some and the n = -1 assignment on others?
5. Vector and Array Processors
It doesn’t: at any point in time each processor is executing the current instruction
or doing nothing at all
Processors can be inhibited, meaning not participating in the current instruction
There is a per-processor inhibit flag to say whether this processor is on or off
This is how we get different code paths on different processors
6. Vector and Array Processors
We must modify our description of SIMD machines:
Each processor either executes the same instruction as the others; or does nothing at all
7. Vector and Array Processors
Returning to the code
if (me > 512) {
 n = 1;
}
else {
 n = -1;
}
This is executed as follows:
· All processors execute the test in the if
· In those processors for which the test fails, the inhibit flag is set
· All processors move to the n = 1; the inhibited processors do nothing while the others execute the assignment
8. Vector and Array Processors
· All processors move to the else; all inhibit flags are inverted
· All processors move to the n = -1; the inhibited processors do nothing while the others execute the assignment
· All inhibit flags are cleared
· All processors move on to after the if
Both branches of an if always taken by all processors!
11. Vector and Array Processors
The time taken for an if is the sum of the times of both branches
Quite different from sequential code
Reality is a little more complicated: think about nested ifs
There is actually a stack of inhibit flags!
Exercise Think this through for yourself!
12. Vector and Array Processors
This seems like poor use of our processors if lots of them are inhibited
True, so SIMD code should be written to minimise conditional branches
But with thousands of CPUs, processing power is cheap, so inhibiting some of them is not as bad as it seems, as long as it is not overdone
if (me > 512) foo();
else bar();
is not good code: all of foo must be executed before bar can start, so there is a large amount of inhibition
13. Vector and Array Processors
Inhibition applies to all conditional code, like loops:
int i, n;
...
for (i = 0; i < n; i++) {
 ...
}
All processors start the loop
As i increases, some processors pass their exit test and are inhibited; other processors continue executing; all processors continue looping
Note no processor starts executing after the loop until all processors have exited
14. Vector and Array Processors
Loops must wait until all processors have completed: they take time the maximum of the individual processors
SIMD loops are most efficient when all the loops are of the same size
Similarly for all conditional constructs: if there is a choice all processors will take all the choices, but some are appropriately inhibited
15. Vector and Array Processors
Connection Machines had a lightbulb per processor: initially they set it so the light was on when the processor was active
After a while they fixed it so the light was on when the processor was inhibited…
We shall return to SIMD programming with CUDA, later, when we talk about parallel languages
16. End of Architectures
We have seen a variety of machine architectures, but primarily people use:
· shared memory
· distributed memory
· SIMD
Quite often, all at once!
It is time to move from the machines to the code running on them
17. Parallel Algorithms
We now turn to parallel algorithms
We shall approach them in two ways
· general principles
· specific examples
The first will look at a few general techniques and some classic problems in parallelism
The second will be a couple of specific algorithms, such as a parallel sort
18. Parallel Algorithms
Divide and Conquer
Perhaps the simplest way to parallelise a problem is divide and conquer
· subdivide the problem into smaller parts
· process the parts in parallel
· merge the results back together
Of course, this only applies if you have a problem that you can subdivide!
And it works best if the parts are independent of each other: less communication
19. Parallel Algorithms
Divide and Conquer
For example, summing values becomes
· subdivide the values into smaller chunks, sending the chunks to separate processors
· each processor sums its chunk (process in parallel)
· return the results to the main processor and add the values together (merge)
20. Parallel Algorithms
Divide and Conquer
Question: how big should the chunks be?
Too small and we spend all our time in communication overhead; plus the merge step gets bigger
Too large, thus fewer chunks, and we might not get the parallelism we want
21. Parallel Algorithms
Granularity
This is the question of granularity, or “chunk size”
A big problem in programming parallelism is deciding on the choice of granularity of a sub-problem, for exactly the reasons given above
Computing a single sum is a small grain; while averaging a row of a large matrix is a big grain
The former you might not want to parallelise; the latter you would
22. Parallel Algorithms
Granularity
Grain size: the size of a chunk
You will see “small grain” and “large grain”; alternatively “fine grain” and “coarse grain”
Granularity: the ability of a problem (data or computation) to be divided into fine or only coarse grains
Some programs may only admit a coarse granularity
Some may admit a fine grain, but should we split it up into small grains?
23. Parallel Algorithms
Granularity
Fine: more parallelism, more communications
Coarse: less parallelism, less communications
24. Parallel Algorithms
Granularity
It’s the grey area in the middle that is the issue: how large should a grain be before we consider running it in parallel?
The answer: it depends
On everything, but particularly the ratio of computation time to communications speed on the particular hardware we have
25. Parallel Algorithms
Granularity
For fast communications (shared memory, perhaps) we would chop our problem up into relatively small grains
For slow communications (distributed memory, perhaps) the sub-problems need to be larger before we benefit from parallelising
Often, the best way of working it out is just to try some test programs and measure the result
