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1. Concurrency Control
Monitors
The next approach to parallelism we shall look at is to have constructs as part of the language
For example, a monitor is a language construct that combines mutual exclusion and synchronisation in a way that can be easier to use than the concurrency primitives
monitor Name
   local variable declarations
   func fun1(args)  body 
   func fun2(args)  body 
   ...
end
The actual syntax will vary by language
2. Concurrency Control
Monitors
Mutual exclusion is enforced by
only one thread at a time may be executing any function inside a given monitor
So, if one thread is executing fun1 and another thread tries to execute fun2, it will have to wait until the first thread exits the monitor
3. Concurrency Control
Monitors
So there is mutual exclusion on the local variables and within the dynamic scope of the functions in the monitor, i.e., mutual exclusion continues even if fun1 calls a function defined outside the monitor
The mutual exclusion finishes when the thread of control exits the (top level) monitor function
Clearly, monitors will be implemented with locks, but this conveniently hidden from the programmer using them
4. Concurrency Control
Monitors
Synchronisation is provided by the use of condition variables
wait(c); and signal(c);
The associated lock is the monitor mutual exclusion lock, and is implicit
Just like the POSIX version, wait() will drop the monitor lock to allow other threads access; and try to regain it when it resumes
5. Concurrency Control
Monitors
We can easily implement a lock using a monitor:
monitor Lock
  int flag = 0;
  condition c;
  lock() { while (flag == 1) wait(c); flag = 1; }
  unlock() { flag = 0; signal(c); }
end
The monitor lock provides the atomicity we need in the definition of lock
6. Concurrency Control
Monitors
Monitors help with management of mutual exclusion, but the usual nesting deadlock is still possible. For monitors m1 and m2:
monitor m1                     monitor m2
  fun1() { ... fun2() ...}       fun2() { ... fun1() ... }
  ...                            ...
end                            end
	1
	2

	fun1 in monitor m1 calls
	fun2 in monitor m2 calls

	fun2 in monitor m2 (waits)
	fun1 in monitor m1 (waits)


7. Concurrency Control
Monitors
Modularity might even encourage this error, though monitors are high enough level to be easy to analyse automatically so there are source code tools to spot this
They require careful use and are not a universal solution!
8. Concurrency Control
Java Monitors
Monitors clearly fit well with object oriented languages: for example, Java implements monitors on a per-object level:
class foo {
  private int n = 0;
  public synchronized int inc() { n++; }
  public synchronized int dec() { n--; }
  ...
}
Methods with the synchronized keyword are within a per-object monitor, i.e., one per instance of foo
9. Concurrency Control
Java Monitors
Only one of inc and dec can be executing on a given instance of foo at a time
Condition variables: wait(), notify() and notifyAll()
Class methods (static) can be synchronised, too, locking the class but not its instances
10. Concurrency Control
Monitors
Monitors are fairly easy to use, but are somewhat large grained: the whole of each monitor, for example all methods marked synchronized in a Java object
class foo {
  private int n = 0, m = 0;
  public synchronized int incn() { n++; }
  public synchronized int decn() { n--; }
  public synchronized int incm() { m++; }
  public synchronized int decm() { m--; }
}
11. Concurrency Control
Monitors
To have separate locks on some of the methods requires code refactoring (or see below): You can do this, but this is driving the code towards complexity
Similarly, it is a bit fiddly to decide on what functionality goes into which monitor: if you are not careful you end up with all your code in one big monitor—sequential!
12. Concurrency Control
Monitors
Exercise What about the following?
class foo {
  private int n = 0, m = 0;
  public synchronized int incn() { n++; }
  public synchronized int decn() { n--; }
  public synchronized int incm() { m++; }
  public synchronized int decm() { m--; }
  public synchronized int swap() { int s = m; m = n; n = s; }
}
13. Concurrency Control
Java Monitors
Java recognises that monitors are sometimes too large, so it allows synchronising of statements (rather than whole methods) as a way of providing finer gain control
public class locket {
  private Object nlock = new Object();
  private int n = 0;
  public void inc() {
    synchronized(nlock) { n++; }
  }
  public void dec() {
    synchronized(nlock) { n--; }
  }
}
14. Concurrency Control
Java Monitors
synchronized takes an arbitrary object as argument
A class can have as many of these as it likes in addition to the implicit one provided by the class monitor
This is fine, but we have just reinvented mutexes!
But in a more convenient form: you can’t forget to lock or unlock these
15. Concurrency Control
Java Monitors
Incidentally, Java also has a library of atomic datatypes, e.g., AtomicInteger with a few methods, that does the obvious thing
But these are tiresome to use as Java does not have operator overloading, like C++: thus n.incrementAndGet() rather than overloading ++ and using the simpler ++n
16. Concurrency Control
Conditional Critical Regions
Exercise A similar, but simpler, kind of idea is conditional critical regions, where a semaphore is associated with blocks of code (the critical regions)
let s = Semaphore::new(1);
...
region s {                      region s {
  // critical region               ...
  ...                              <set condition>
  await <some condition>           ...
  ...                           }
}
Read about this (e.g., in Ada).
17. Parallelism Languages
The logical approach to parallel programming is to use a language that was designed from the start to support parallelism
There have been very many attempts at creating new languages with explicit support for parallelism
For example, Occam, Strand, Erlang, Linda, SALSA, SISAL, Parlog, Charm, NESL, Go, Rust as just a few from a huge list
We should have time to look at one or more of these towards the end of the Unit
Some of these languages are quite difficult to learn and use effectively
18. Language Modification
A conservative approach to getting these kinds of parallel support is to take an existing language, like C, and tweak the language to add parallelism
Then, so the theory goes, you can tap into the existing expertise in that language and extend it to parallel systems
This is true to a certain extent, but it still tries to layer parallel ideas over a sequential foundation
Parallelism should not be an afterthought, but should really be part of the foundation
19. Language Modification
The main example we shall be looking at is OpenMP (Open MultiProcessing)
This takes C (or C++) and add some new constructs to notate parallel execution
By hiding the low-level primitive locking and synchronisation they aim to provide an easier way of writing parallel programs
And minimise the kinds of errors the primitives invoke
20. OpenMP
OpenMP fits nicely into the superstep model of computation
While you shall not be using OpenMP for the coursework, some of you might want to use it for your FY Project
21. OpenMP
Here is a simple loop
for (i = 0; i < 10; i++) {
  sq[i] = n + i*i;
}
With OpenMP annotation
#pragma omp parallel for
for (i = 0; i < 10; i++) {
  sq[i] = n + i*i;
}
The #pragma omp indicates that we want the loop to be run in parallel
#pragma is a general C mechanism, not limited to OpenMP
22. OpenMP
When this is run, the loop is split into some number of chunks, running on some number of threads
The OpenMP runtime system determines the number of chunks and number of threads
That is, it makes a choice when the code is run
And the numbers of chunks and threads may differ on different runs
23. OpenMP
Typically the number of chunks is the same as the number of threads, which is the same as the number of processors in the system, but it need not be
And each chunk typically iterates close to

times
24. OpenMP
Also important is that the runtime creates parallel code with a  private version of i per thread
Each thread wants its i to range, in parallel, over different values, e.g., 0–2, 3–5, 6–8, 9
Or maybe 0–2, 3–5, 6–7, 8–9; or something else
The runtime decides, and potentially might choose a different split in different runs
The parallel for construct knows the loop variable must be private
But the variables n and sq are shared across the threads
25. OpenMP
Note:
· we do not give a number of threads
· the creation and destruction of threads is all hidden from us: it may create and destroy threads on each occurrence of a #pragma omp; or it may use a thread pool
· the compiler determines we need a per-thread variable i
· by using the construct we are assuring the compiler that it is safe to do the loop in parallel and there are no data (or other) races.
· If the loop was
av[i] = av[i] + av[i-1];
it would blindly do this in parallel
· so OpenMP provides a simple mechanism, but no analysis
26. OpenMP
Exercise Convince yourself why the following is wrong:
Convert
for (i = 0; i < 10; i++) {
  av[i] = av[i] + av[i-1];
}
to
#pragma omp parallel for
for (i = 0; i < 10; i++) {
  av[i] = av[i] + av[i-1];
}
27. OpenMP
Another example:
#include <stdio.h>
#include <omp.h>

int main(int argc, char* argv[])
{
#pragma omp parallel  
  printf("Hello world, I am thread %
         omp_get_thread_num());
  return 0;
}
Guesses for the output?
28. OpenMP
Running on an 8 core machine:
Hello world, I am thread 0
Hello world, I am thread 6
Hello world, I am thread 5
Hello world, I am thread 4
Hello world, I am thread 3
Hello world, I am thread 1
Hello world, I am thread 7
Hello world, I am thread 2
29. OpenMP
Note:
· the printfs are in no particular order; running the same code again gives a different order output
· the printfs are separate, the outputs are not mixed. This is because this implementation has internal locks on output streams
· We see all of the printfs: OpenMP has an implicit barrier at the end of each construct (superstep). This means the main thread (or rather, the pragma parallel) waits for all threads to finish before moving on and executing the next line (return in this example)
30. OpenMP
There are several OpenMP pragmas
#pragma omp parallel for
for (...) { }
The loop variable is made private per-thread; by default all other variables are shared between the threads
31. OpenMP
#pragma omp parallel sections
{
#pragma omp section
  {
    printf("Hello world, I am thread %
           omp_get_thread_num()); 
  }
#pragma omp section
  {
    printf("hi there, I am thread %
           omp_get_thread_num());
  }
}
This executes on (maybe) just two threads, one thread per section
32. OpenMP
The sections need not contain similar code
Exercise But ideally should contain codes that take roughly the same time to execute. Why?
33. OpenMP
#pragma omp parallel
{
#pragma omp for
#pragma omp sections
#pragma omp barrier
#pragma omp masked
#pragma omp critical
...
}
A general parallel section that contains more specific ways of parallelising
34. OpenMP
barrier is an explicit barrier
masked marks code that will only be executed by threads that match the mask
critical marks a critical region that will be executed by exactly one thread at a time (a monitor or mutex)
35. OpenMP
#include <stdio.h>

int count = 0;

void inc() {
#pragma omp critical
  count++;
}

int main(int argc, char* argv[])
{
#pragma omp parallel
  inc();

  printf("count = %
  return 0;
}
Prints the number of threads (bad code!)
36. OpenMP
Each parallel pragma can take extra arguments for fine control:
#pragma omp parallel for [shared(vars), private(vars),
firstprivate(vars),lastprivate(vars),
default(shared|none), reduction(op:vars), copyin(vars),
if(expr), ordered, schedule(type[,chunkSize])]
· shared a list of variables that are shared between the threads (default: all variables except the loop variable)
· private a list of variables that are private to each thread; default for a loop variable
· nowait remove the implicit barrier at the end of the section
· reduction(op:vars) private variables that are reduced using the op at the end
37. OpenMP
int i;
#pragma omp parallel reduction(+:i)
  i = omp_get_thread_num();
printf("i = %
Each thread gets its own private i; at the end of the section all copies are reduced to the single value of i by +
So, maybe, 
Reductions turn out to be commonly needed in parallel programs
