Parallel Computing
CM30225
Russell Bradford
2023/24
1. Concurrency Primitives
Synchronisation
Now we look at some other problems
Consider our original counting code with a shared variable count. A simple solution might be to make count non-shared:

1                           2
for (i = 0; i < 50; i++) {   for (j = 50; j < 100; j++) {
    if (val[i] > 0)               if (val[j] > 0)
       count1 = count1 + 1;            count2 = count2 + 1;
}                            }
count = count1 + count2;
There is now another, different, problem with this code!
2. Concurrency Primitives
Synchronisation
The problem now is when is the count = count1 + count2 executed?
To be correct, it has to happen after both the loops have finished: any earlier will give a wrong answer
It will definitely happen after loop 1 has finished, but what about loop 2?
We can’t rely (in a MIMD architecture) on the two loops on different cores running at the same time and finishing at the same time
Timings in the system may have the two loops running in any conceivable arrangement of before, after or overlapped
3. Concurrency Primitives
Synchronisation
1                           2
for (i = 0; i < 50; i++) {
    if (val[i] > 0)        
       count1 = count1 + 1;
}                            for (j = 50; j < 100; j++) { 
count = count1 + count2;          if (val[j] > 0)           
                                       count2 = count2 + 1; 
                              }                            
4. Concurrency Primitives
Synchronisation
So we must explicitly write code to ensure the final sum only happens when both loops are finished
This is a synchronisation between the two threads
It may mean thread 1 waiting for thread 2
Another sequentialisation!
5. Concurrency Primitives
Synchronisation
More subtly: if this code is executed more than once (perhaps counting more than one array), thread 2 ought to wait for thread 1 before starting!
It is possible that 1 is slow or paused for some reason, when 2 might do its bit and come around again on the next call to the count code, do the count on some other data, updating count2 as it goes
Finally 1 awakes and gets the wrong count2
This does happen and is a source of bugs
6. Concurrency Primitives
Semaphores
Semaphores can be used for thread synchronisation
Typically, we might have some thread that can only continue its work when one (or more) others have finished doing something, maybe computing some inputs for the thread to process
It can wait on a semaphore, again a simple flag, until another thread sets the flag. Then it knows it can continue
Note that even though both locks and semaphores are flags, they are very different things! Beware it is common for people to confuse the two
7. Concurrency Primitives
Semaphores
Semaphores are manipulated by two atomic operations P and V that symbolically act atomically as:
P(s): while (s == 0) {      V(s):  s = 1;
         suspend();                if any process waiting on s
      }                               unblock one
      s = 0;
8. Concurrency Primitives
Semaphores
On finding  a thread will suspend itself; when awoken it will re-attempt to set the semaphore: and it will often succeed, unless a third thread comes along and gets the semaphore first
Like locks, semaphores are not fair on which thread will be awoken if more than one is waiting
Other names for P are: wait, up, lock, enter, open
Other names for V are: signal, down, unlock, exit, close
P stands for “proberen”, V for “verhogen”, which are Dutch for “test” and “increase”
9. Concurrency Primitives
Semaphores
Semaphores synchronise across threads:
do something
wait(s)              prepare data
read data            signal(s)
                     carry on
                     prepare data
do something         signal(s)
wait(s)              carry on
read data
Thread 1 waits until thread 2 has prepared some data before reading it
The signal and wait might happen in any order
10. Concurrency Primitives
Counting Semaphores
The above are called binary semaphores as the idea can be trivially extended into counting semaphores
P(s): while (s == 0) {    V(s):  s = s + 1;
         suspend();              if any process waiting on s
      }                             unblock one
      s = s - 1;
When initialised with the value , this will allow  threads to open the semaphore before blocking
11. Concurrency Primitives
Counting Semaphores
This allows region access control when there can be one than one, but fewer than some limit in the region simultaneously
For example, if there are 5 places at a dining table we can allow no more than 5 people in the room at a time
Or 4 if they are philosophers…
12. Concurrency Primitives
Semaphores
Mutual exclusion with semaphores happens to be easy:
wait(s);
<CR>
signal(s);
Wait for the semaphore; signal it’s free when you are done
But don’t do this: it’s better to use locks here. Semaphores are more general than locks: they allow a thread to suspend itself and be awoken by another thread when some condition is true
13. Concurrency Primitives
Semaphores
Mutexes: the thread that sets the flag must be the thread that clears the flag
Semaphores: the thread that sets the flag will generally be different from the thread that clears the flag
Semaphores should be used across threads, mutexes must not
The locking effect is in some sense incidental: more useful is using semaphores to synchronise
14. Concurrency Primitives
POSIX Semaphores
POSIX semaphores:
#include <semaphore.h>
sem_t sem;
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);
int sem_wait(sem_t *sem);
int sem_post(sem_t *sem);
int sem_trywait(sem_t *sem);
“post” for signal
15. Concurrency Primitives
POSIX Semaphores
Exercise Add a semaphore to the count1/count2 example to get thread 1 to wait for thread 2 before doing the final sum
Exercise Then add another semaphore to get thread 2 to wait for thread 1 before starting
16. Concurrency Primitives
Barriers
Another synchronisation primitive is barriers (occasionally called rendezvous)
A barrier stops threads from continuing until some required number of threads have all hit the barrier; then they can all continue together
This allows us to synchronise parts of the program: recall supersteps
17. Concurrency Primitives
Barriers
Suppose we have a list of numbers we want to square then add in pairs
for (i = 0; i < 100; i++) {
    v[i] = v[i]*v[i];
}
for (i = 0; i < 100; i++) {
    s[i] = v[i] + v[99-i];
}
We can parallelise this by having (say) 4 threads; each thread squares a block of values; then they add a block of values
18. Concurrency Primitives
Barriers
1            2            3            4
v[0]^2       v[25]^2      v[50]^2      v[75]^2
v[1]^2       v[26]^2      v[51]^2      v[76]^2
v[2]^2       v[27]^2      v[52]^2      v[77]^2
...          ...          ...          ...
v[24]^2      v[49]^2      v[74]^2      v[99]^2
v[0]+v[99]   v[25]+v[74]  v[50]+v[49]  v[75]+v[24]
v[1]+v[98]   v[26]+v[73]  v[51]+v[48]  v[76]+v[25]
...          ...          ...          ...
v[24]+v[75]  v[49]+v[50]  v[74]+v[25]  v[99]+v[0]
19. Concurrency Primitives
Barriers
1                           2                             3...
for (i = 0; i < 25; i++) {  for (j = 25; j < 50; j++) {
    v[i] = v[i]*v[i];           v[j] = v[j]*v[j];
}                           }
for (i = 0; i < 25; i++) {  for (j = 25; j < 50; j++) {    ...
    s[i] = v[i] + v[99-i];      s[j] = v[j] + v[99-j];
}                           }
Again, the above might work sometimes, or many times, but it is buggy
20. Concurrency Primitives
Barriers
The problem here is again that the threads may not all be running at the same speed: perhaps one thread is interrupted and descheduled by the OS; or memory access is not uniform speed; or many other factors
So we can’t rely on all the threads finishing their squares at precisely the same time: one thread might finish its block and start adding using values not yet finished squaring
Another synchronisation problem
21. Concurrency Primitives
1            2            3            4
v[0]^2       v[25]^2      v[50]^2      
v[1]^2       v[26]^2      v[51]^2      
v[2]^2       v[27]^2      v[52]^2      v[75]^2
...          ...          ...          v[76]^2
...          ...          ...          ...
v[24]^2      v[49]^2      v[74]^2      v[97]^2
v[0]+v[99]   v[25]+v[74]  v[50]+v[49]  v[98]^2
v[1]+v[98]   v[26]+v[73]  v[51]+v[48]  v[99]^2
...          ...          ...          v[75]+v[24]
...          ...          ...          ...
v[24]+v[75]  v[49]+v[50]  v[74]+v[25]  v[97]+v[2]
                                       v[98]+v[1]
                                       v[99]+v[0]
This is how we get the wrong answer: again just because the lines of code for the adds follows the lines of code for the squares make us believe every add happens after every square
22. Concurrency Primitives
Barriers
We need to synchronise all the threads at the end of the squares before allowing them to continue with the adds
                        b = make_barrier(4);
<parallel squares> <parallel squares> <parallel squares> ...
barrier_wait(b);   barrier_wait(b);   barrier_wait(b);   ...
<parallel adds>    <parallel adds>    <parallel adds>    ...
Only when all 4 threads have reached the barrier can they all proceed
23. Concurrency Primitives
Barriers
Barriers are good for the superstep style of programming
[image: Pics/superstep.svg]
Supersteps
But beware: as a barrier synchronises many threads, there is potentially a lot of waiting going on: we can’t progress faster than the slowest thread
Thus barriers are best when all the threads are doing roughly the same amount of work
24. Concurrency Primitives
POSIX Barriers
#include <pthread.h>
pthread_barrier_t barrier;
int pthread_barrier_init(
    pthread_barrier_t *restrict barrier,
    const pthread_barrierattr_t *restrict attr,
    unsigned count);
int pthread_barrier_destroy(pthread_barrier_t *barrier);
int pthread_barrier_wait(pthread_barrier_t *barrier);
A barrier can be reused immediately after it has released its threads; it has a fixed value of  set when it is initialised
Exercise Have a look at the return value from pthread_barrier_wait
25. Concurrency Primitives
POSIX Barriers
Exercise Fix the count1/count2 problem with barriers
Exercise Both semaphores and barriers are about synchronisation. Think about how you might implement barriers using semaphores
Exercise Think about how you might implement semaphores using barriers
26. Concurrency Primitives
Condition Variables
One last primitive we are going to look at is condition variables
As the name suggests, it is a way a thread can wait until some condition is true
The idea is that one or more threads can wait on a condition variable until another signals that the required condition is now true
The signal can either let just one thread continue, or be a broadcast that lets all waiting threads continue
Condition variables are normally associated with a mutex, and are used inside a critical region protected by that mutex
27. Concurrency Primitives
Condition Variables
1                         2
get_lock(mx);              get_lock(mx); 
<CR>                       <CR>
condvar_wait(cv, mx);      condvar_signal(cv);
(wait)                     free_lock(mx);
<CR>
free_lock(mx);                        
condvar_wait releases the mutex and waits on the condition variable
When the other thread signal signals and releases the mutex, the first thread regains the mutex and continues within the critical region
28. Concurrency Primitives
Condition Variables
The condition variable allows thread 1 to “step outside” the critical region, letting another thread to enter and do something
Conditions variables combine mutual exclusion and synchronisation
Again, not fair on which thread gets to continue if more than one is waiting
With a broadcast all other threads are marked as ready to run, but only one will regain the lock; the others will blocked on the lock as normal
One will get the lock when the first thread releases it; and so on
29. Concurrency Primitives
POSIX Condition Variables
#include <pthread.h>
int pthread_cond_init(pthread_cond_t *restrict cond,
            const pthread_condattr_t *restrict attr);
int pthread_cond_destroy(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *restrict cond,
            pthread_mutex_t *restrict mutex);
int pthread_cond_timedwait(pthread_cond_t *restrict cond,
            pthread_mutex_t *restrict mutex,
            const struct timespec *restrict abstime);
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
30. Concurrency Primitives
POSIX Condition Variables
As an example of the kind of grungy detail that parallelism has to address: POSIX recognises that there is a nasty implementation detail that would otherwise make implementing condition variables impractical
The specification for pthread_cond_signal says
The pthread_cond_signal() function shall unblock at least one of the threads that are blocked on the specified condition variable cond
“at least one”: there is a (rare) problem of  spurious wakeups that is in general too expensive to avoid
31. Concurrency Primitives
POSIX Condition Variables
This just means you have to be a bit formulaic about the use of condition variables and always have a condition to test before continuing
1                          2
iteration = 0;
get_lock(mx);               get_lock(mx);
<CR>                        <CR>
it = iteration;             iteration++;
while (it == iteration)     condvar_signal(cv, mx);
    condvar_wait(cv, mx);   free_lock(mx);
<CR>
free_lock(mx);
Thread 1 might get awoken spuriously but it doesn’t want to continue until the next iteration
32. Concurrency Primitives
POSIX Condition Variables
In general you would test for whatever condition you were waiting for: thread 2 sets the condition, thread 1 should test for it
Condition variables are very useful, but a bit of a pain to use
33. Concurrency Primitives
Concurrency Primitives
We have called these things primitives, but we can implement them in terms of each other
Exercise Do this
All eventually go back to the underlying hardware or software support
“Primitive” is actually a good description as they are all very low level
34. Concurrency Primitives
Concurrency Primitives
And they do have a cost, thus their use does limit the speedup available
Their overhead can be divided into two parts
· the time spent blocked as a necessary part of its function, e.g., wait on a lock
· the time spent in executing the code of the primitive
Note part (a) isn’t really a limitation of the primitive: it’s necessary if it is to work at all. It is (b) that the implementation of a primitive seeks to minimise
35. Concurrency Control
Higher Level
Semaphores, locks, barriers, etc., and even threads are likened to assembler: low-level, fast, fine control, but very likely to encourage buggy programs
While many programmers are happy using them, others need higher level solutions
These come in many forms
36. Concurrency Control
Higher Level
Concurrency control can be supported in a high-level language as
· added in to an existing language, in library support. We have seen some of this already: the POSIX examples
· fudged into the syntax of an existing language
· part of the initial design of a new language
We shall be looking at all of these approaches
37. Concurrency Control
Higher Level
There is a lot of sequential code out there that people would like to run faster on parallel hardware
While there is a lot of effort being put into automatic analysis of code to discover and exploit parallelism, the results are sporadic
Functional languages offer a decent hope here, but not much code is functional style
So code needs to be rewritten to make best advantage of parallelism
The hope (and economics) is we can take existing code using an existing language and modify it
38. Concurrency Control
Libraries
It’s not a good way of doing things, but rewriting from scratch is just too expensive
Of course, new projects ought to be written with parallelism in mind from their start
Also, there are lots of programmers with extensive expertise in languages like C, Java and C++ — meaning such programmers are cheaper to employ
So we are led to the approach of taking, say C, and adding parallelism to it
The easiest way is to leave the language itself untouched, just adding a library of functions that do parallelism
39. Concurrency Control
Libraries
For example, the POSIX pthread approach
Note: We have been using C and the POSIX library to illustrate points, but this library technique applies to all sensible languages
But you can’t just add a parallel library to a sequential language and hope everything is OK
40. Concurrency Control
Threads again
Modern compilers and modern hardware both try their best to execute your code as fast as possible
But in doing so, they can break parallel code
For example, some compiler optimisations can break parallel code
And some hardware optimisations can break parallel code
41. Concurrency Control
Compiler Reordering
Modern compilers often reorder code to make things more efficient
For example, main memory access is (relatively) slow, so if the value of a variable is needed, the compiler might try to start loading it earlier than the code might suggest
42. Concurrency Control
Compiler Reordering
Given code
    y = 2;
    x = z;
    x += y; // need to wait for z before we can do this
The compiler might spot it can start loading z earlier, so there is less of a wait before it can do the increment:
    x = z;
    y = 2; // do this without waiting for z to be loaded
    x += y;
The effect is the same, but it goes a little faster. The compiler in effect rewrites your code
43. Concurrency Control
Compiler Reordering
This could break things. Consider
A                                       B
while (cont == 0) {/* nothing */}       x = 42;
print x;                                cont = 1;
where the intent was to have thread A to wait for thread B to set the cont flag before continuing to print 42
A compiler only seeing the code for B may conclude that the variables cont and x are independent and so (perhaps for whatever reason) it can rearrange the code as
cont = 1;
x = 42;
44. Concurrency Control
Compiler Reordering
Similarly for A: it is possible that the read of x can done before the loop
Note: never write code like this in the hope that it might work: it is simply buggy code! Use a semaphore or equivalent
The problem is that there is a hidden relationship between the variables x and cont that is in the mind of the programmer, but is not expressed in the code
45. Concurrency Control
Compiler Reordering
Example. Consider the code:
int a = 0;
int b = 0;

A                                    B
a = 42;                              b = 42;
printf("%
Explain how it might print 0 twice, even though it appears we always print after an update
rId63.svg
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




rId66.png




