Parallel Computing
CM30225
Russell Bradford
2023/24
1. Concurrency Primitives
Locks
Locks are definitely needed when we update (read then modify) the value of a variable
The question arises regarding whether we need a lock around a simple read of a multi-byte value, such as a 32-bit (4 byte) integer
It is easy to believe some bytes of a value might be written while half-way through being read, resulting in a mix of the bits of the old and new values
Called read (or write) tearing
2. Concurrency Primitives
Locks
However, for most (non-embedded) machine architectures these days it is likely (not certain!) to be safe to read simple values like integers or doubles that fit in a register: the hardware read is atomic (another side effect of the caching mechanism)
Though you do need to be careful on strange machine architectures, or with compilers that try to be too clever (For hackers: think about non-aligned accesses)
Certainly, though, for reading all of a larger object or structure, a lock will be necessary to ensure consistency across the multiple machine reads it takes to read in the whole structure
3. Concurrency Primitives
Locks
int x, y;
...
y = x;
Usually safe as reads of ints are generally atomic
4. Concurrency Primitives
Locks
// Also OO classes or objects
struct rational {
 int num, den;
};
struct rational r, s;
...
r = s;
Possibly unsafe, as it could take two machine reads to get all of s, which might be modified halfway through by another thread
Unlikely, but you can’t rely on that
Analogously for the write of r
5. Concurrency Primitives
Locks
Exercise For C geeks. There is an aliasing problem with bit fields in a struct
struct {
 int a: 5;
 int b: 3;
}
where an update to field a might be implemented as a read of a byte, modifying the bits of a, then writing a byte. Investigate
Exercise What about a 128-bit long long int on a 64-bit machine?
6. Concurrency Primitives
Locks
What about when we need to use more than one lock?
Of course, we can and should have separate locks in order to protect separate resources: we could use countlock to protect updates to another shared variable sum, but that would prevent one thread updating count while another is updating sum, which is perfectly safe to do
The only real reason to share a lock like this would be in when there are severe memory limitations: but lock implementations tend to use only a little memory per lock
7. Concurrency Primitives
Locks
But we do need to be careful about what we protect from what as it all has a cost
Getting and releasing a lock can be relatively cheap (in some architectures and operating systems; expensive in others) but it is not free: it is an overhead to be taken into account and avoided if you can
In many implementations these days the cost of getting an uncontended lock (not already locked) is cheap, while the cost of getting a lock that is already held is expensive
So the common (you hope) case is cheap
8. Concurrency Primitives
Locks
Also note, locks can be used to protect anything, not just variables, e.g., whole function calls or whole loops. But we should try too keep the regions small
get_lock(mux);
someone_elses_dodgy_code();
free_lock(mux);
Another reason to use a single lock could be that the code you want to protect is so complicated you are not clear on how to proceed!
9. Concurrency Primitives
Locks
Locks are a simple, low level mechanism
Too low level: they are easy to use incorrectly
Suppose we have a couple of variables x and y we are protecting with mutexes mx and my respectively. We want to swap their values; elsewhere replace them both by their average
tmp = x; av = (x+y)/2;
x = y; x = av;
y = tmp; y = av;
10. Concurrency Primitives
Locks
To make this safe we have to use both locks
get_lock(mx);
get_lock(my);
tmp = x;
x = y;
y = tmp;
free_lock(my);
free_lock(mx);
11. Concurrency Primitives
Locks
Some pages of code later
get_lock(my);
get_lock(mx);
av = (x+y)/2;
x = av;
y = av;
free_lock(mx);
free_lock(my);
Spot the bug!
12. Concurrency Primitives
Locks
This will probably work most of the time, but occasionally just hangs doing nothing
Sometimes we will get
1 2
get_lock(mx); get_lock(my);
get_lock(my); (waits) get_lock(mx); (waits)
This is simple deadlock, another race condition
13. Concurrency Primitives
Locks
A very easy error to make, but often very difficult to find, particularly as the locks of mx and my may be widely separated in the code, or in someone else’s code
The use of locks requires a great deal of careful management when the code gets large
Exercise Why wouldn’t having another mutex mxy to protect both x and y solve things?
14. Concurrency Primitives
Locks
If we want to use a lock in portable code, we can use a library specification like POSIX
This is a standard that covers a large number of functions, specifying their use and behaviour
15. Concurrency Primitives
POSIX pthread
The pthread section on the POSIX specification contains several functions that we shall soon be looking at:
· Locks: pthread_mutex_ init, lock, unlock, destroy
· Barriers: pthread_barrier_ init, wait, destroy
· Condition Variables: pthread_cond_ init, wait, signal, broadcast, destroy
· Semaphores: sem_ init, post, wait, destroy
· Management: pthread_ create, join
And many others
16. Concurrency Primitives
POSIX pthread
For example, pthread_create (we shall come back to this later)
#include <pthread.h>
int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);
}
is how to create a new thread: it takes an attribute (always NULL for our purposes), a function of one argument to start executing, and a value to pass as the argument to that function
It returns a thread identifier in the first argument
17. Concurrency Primitives
POSIX pthread
Documentation for POSIX pthread functions is available everywhere, online and possibly on your own computer
For example, on Linux you can use manual pages, e.g.,
man pthread_create
to get detailed information
18. Concurrency Primitives
POSIX Locks
A real example of locks, as defined by the POSIX standard, where they are called mutexes
#include <pthread.h>
pthread_mutex_t mutex;
An (uninitialised) mutex
19. Concurrency Primitives
POSIX Locks
int pthread_mutex_init(pthread_mutex_t *restrict mutex,
 const pthread_mutexattr_t
 *restrict attr)
Initialises the mutex pointed at by the first argument, returns a 0 that indicates success or non-0 to indicate failure
POSIX locks come with various attributes: the default (NULL) is normally what you want
pthread_mutex_t mut;
if (pthread_mutex_init(&mut, NULL) != 0) { ...error... }
20. Concurrency Primitives
POSIX Locks
There is a alternative static way to initialise mutexes if all you need is a basic lock:
// declare and initialise
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
21. Concurrency Primitives
POSIX Locks
int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
The main grab and free functions
It is an error to try and unlock a mutex that is held by another thread: the thread that locks must be the thread that unlocks
This is a POSIX specification designed to make locks widely implementable of a variety of architectures
And this is not a limitation: it is a desired behaviour. If you allowed another thread to unlock a mutex you can bet this would be misused by some programmers thus opening a new opportunity to write buggy code
22. Concurrency Primitives
POSIX Locks
“It is an error”: some implementations return an error value, while others (depending on the OS) have undefined behaviour
Some versions of mutexes also allow recursive (or reentrant) locking, where a thread that already owns a lock can lock it again; it needs to do the same number of unlocks to free the lock
Non-recursive versions just self-deadlock, or have undefined behaviour
23. Concurrency Primitives
POSIX Locks
On fairness of POSIX mutexes:
Posix says “the scheduling policy shall determine which thread shall acquire the mutex” if more than one is waiting
This allows implementations to take pthread_attr_setschedpolicy and thread priorities into account: we shall not talk about that here!
24. Concurrency Primitives
POSIX Locks
int pthread_mutex_trylock(pthread_mutex_t *mutex);
Like pthread_mutex_lock but return immediately (without getting the lock) if the lock was already held. It returns a value of 0 if it got the lock, a non-zero otherwise <+(0)->
This function is occasionally useful, but less than you might believe, as the result doesn’t quite mean what people think it means (sequential assumptions…)
25. Concurrency Primitives
POSIX Locks
It doesn’t say “the mutex is locked”, but really says “the mutex was locked”
It gives the instantaneous state of the lock at the time of the trylock function call: it is possible that by the time the calling thread looks at the value that was returned by trylock the lock is already free
26. Concurrency Primitives
POSIX Locks
int pthread_mutex_destroy(pthread_mutex_t *mutex);
It’s good to clear up when you no longer need the mutex as this may free up some system resources
27. Concurrency Primitives
POSIX Locks
Example code:
#include <pthread.h>
...
pthread_mutex_t m;
/* ought to check values returned by these calls */
pthread_mutex_init(&m, NULL);
...
pthread_mutex_lock(&m);
... <CR> ...
pthread_mutex_unlock(&m);
...
pthread_mutex_destroy(&m);
We can lock and unlock a mutex as often as we wish: we would typically create it once and use it many times before tidying up
28. Concurrency Primitives
POSIX Locks
The properties of POSIX locks are specified just to the point to make them useful: in a portable program you can’t rely on any feature not explicitly mentioned
For example, calling destroy on an uninitialised lock; or calling init on an already-initialised lock; or destroying a lock while another thread holds it; or using a bitwise copy of a lock structure; and so on
Remember that a lot of machines don’t have the nice predictable architecture of a PC
And even PC architectures are very complicated these days
29. Concurrency Primitives
POSIX pthread
Exercise Read about pthread_spin_lock and pthread_rwlock
Advanced Exercise Think about mutexes in the context of async programming, where we have concurrency (but not necessarily parallelism) and we require threads never to block
30. How to make threads
Now we have been introduced to POSIX, we need to take a little diversion from talking about primitives to cover something essential to parallelism
Namely, how do we create new threads to run?
As always, a simple idea that can have unexpected consequences
We shall look at the POSIX mechanism
31. Concurrency Control
POSIX
Creating threads:
#include <pthread.h>
int pthread_create(pthread_t *thread,
 const pthread_attr_t *attr,
 void *(*start_routine) (void *),
 void *arg);
Link with -lpthread
This looks ugly, but is quite simple in practice: it creates a new thread running the function start_routine on the argument arg
32. Concurrency Control
POSIX
It returns a thread identifier in argument thread. This can be used to do things to the thread
attr is a thread attribute: you probably will never need more than the default (NULL), but occasionally you might (stack size; detached thread)
The start_routine names a function of one argument that the thread will start executing when it begins running
The arg is the argument passed to the function (a pointer)
33. Concurrency Control
POSIX
Roughly:
void *hello(void *n)
{
 printf("hello %
 return n;
}

int main(void)
{
 int m;
 pthread_t thr;

 m = 1;
 // should check return value from create ...
 pthread_create(&thr, NULL, hello, (void*)&m);
 ...
}
34. Concurrency Control
POSIX
pthread_create returns (pretty much) immediately with an error code, 0 indicating success
It makes a new thread that runs separately from the main thread
Possibly simultaneously with the main thread, depending on the number of cores and the OS’s scheduling
35. Concurrency Control
POSIX
It runs the function hello with argument a pointer to m
It does this concurrently with the main function, which continues to run
The start_function will generally call lots of other functions to perform whatever the thread needs to do
Ugly type casting is common in C
36. Threads
Aside
This also works on uniprocessor systems: the threads are scheduled in a similar way to processes
You can debug a concurrent program on a sequential machine, but it may not exhibit some of the more subtle race conditions or deadlocks as the threads won’t truly be running in parallel
37. Threads
Aside
You can make more threads than there are cores: for example, run 10 (or 1000) threads on a 4 core machine
And the OS will schedule between the threads
A thread that is blocked (e.g., waiting on a lock) typically would not be scheduled, so it uses no CPU cycles
The question remains whether that is worth it or not to have more threads than cores, as both creating threads and OS scheduling eats up CPU time
A common error is to create hundreds of threads and then wonder why everything is running slowly
Threads create concurrency, not parallelism
