Parallel Computing
CM30225
Russell Bradford
2023/24
1. Analysis
Speedup: Amdahl’s Law
Now there is the natural upper bound of : we wouldn’t expect to get more speedup than the number of processors we have
But it turns out that the number of processors is generally not the limiting factor on speedup: there is another fundamental restriction on speedup that is often overlooked
Amdahl’s Law reveals a natural upper bound on the speedup that is theoretically possible even before we add in implementation overheads
2. Analysis
Speedup: Amdahl’s Law
Suppose we have a problem of which 90% can be run in parallel, leaving 10% sequential code
For example, we have to read data before we can process it: a necessary sequentiality. Similarly for writing after processing. Or the add after the square in
So there’s always some sequentiality
But in the best possible case, using an unlimited number of processors, we might be able to get the parallel part down to as close to zero time as we like
We still have the 10% sequential part
3. Analysis
Speedup: Amdahl’s Law
So the speedup is

A speedup of 10 even on an infinite number of processors
It doesn’t even matter what the problem is, or what hardware we have
4. Analysis
Speedup: Amdahl’s Law
This is Amdahl’s Law:
Every program has a natural limit on the maximum speedup it can attain, regardless of the number of processors used
5. Analysis
Speedup: Amdahl’s Law
We can quantify Amdahl’s Law:
Let be the time spent in the sequential and parallel parts of our problem on a sequential processor
Then the maximum speedup using processors on the parallel part is

where we have perfectly parallelised the parallel part
6. Analysis
Speedup: Amdahl’s Law
Thus there is a natural upper limit on how fast programs can go
Most do I/O, which must be serialised (made sequential)
Further, as , we get

so there is a limit even given infinite processing power
This limit is determined by the time taken in the sequential part of the computation
7. Analysis
Speedup: Amdahl’s Law
To see this consider the fraction which is the proportion of the sequential part within the whole
Note that , and that rearranging the above gives

And so

is bounded
8. Analysis
Speedup: Amdahl’s Law
Note that Amdahl does not say anything about how the speedup varies with
All Amdahl says is that an upper limit exists
Your program may not get anywhere close to that limit and often in real programs, does not
9. Analysis
Speedup: Amdahl’s Law
In real programs, there are many other factors that affect speedup, so that the speedup may well vary all over the place as increases
It can even decrease as gets larger
10. Analysis
Speedup: Amdahl’s Law
[image: Pics/amdahl1.svg]
Speedup in theory
[image: Pics/amdahl2.svg]
Speedup in practice
11. Analysis
Speedup: Amdahl’s Law
To emphasize: all we know is that actual speedup is below Amdahl’s limit
Exercise Show that if , then

Exercise What is the maximum speedup of a program that is 100% sequential?
12. Analysis
Speedup: Gustafson’s Law
Amdahl’s law is real: there is a natural limit on speedup for a given problem
But there’s another point of view
Gustafson pointed out that in real life larger machines tend to attract larger problems
Amdahl assumes a fixed size of problem
Gustafson’s Law (occasionally called Gustafson-Barsis’s Law) gives us another limit
13. Analysis
Speedup: Gustafson’s Law
Suppose we have a problem of size

where is the speedup on processors for a problem of size ; is the fraction of the computation spent sequentially
Gustafson argues: as gets larger, the sequential part relatively decreases, so (is fixed)
So

i.e., we now get a speedup limit that is the “perfect” speedup — on an infinitely sized problem
14. Analysis
Speedup: Amdahl’s Law, Gustafson’ Law
Both Amdahl and Gustafson are correct: they just apply to different cases of scaling
Amdahl: fixed problem, scaling processing power (sometimes called strong scaling)
Gustafson: fixed processing power, scaling problem
This should convince you that even a simple measure like speedup can be problematic!
But it does re-emphasise the fact that parallelism is not about making things faster, but about making things larger
15. Analysis
Speedup
Speedup is a simple measure, often proving that your parallel program is slower than it ought to be
[image: Pics/dropoff.svg]
Typical speedup curve
Sometimes it takes to be surprisingly large before you even catch up with the uniprocessor time with (sometimes never!)
16. Analysis
Speedup
Very common is the low start, a modest increase, then a tailing off
But taking it further
[image: Pics/dropoff2.svg]
Adding more processors
We might eventually find adding processors makes it slower!
17. Analysis
Speedup
This is usually due to increased communications between the processors adding more overhead but not more speedup, perhaps due to Amdahl
Of course, it’s not always this bad, but it’s quite common!
It does mean there is often an optimum number of processors for a given size of problem that achieves the best speedup
Of course, these are only typical behaviours: a given program may behave quite differently from all of this
18. Analysis
Speedup
Exercise Consider what might be the difference between a sequential implementation of something and a parallel implementation running on one processor
19. Analysis
Superlinear Speedup
You will get used to seeing
On the other hand, it is possible that
This seemingly impossible condition is called superlinear speedup
It is quite rare in real life, but it really can happen that a program runs more than times as fast on processors
This can happen for a variety of reasons, some technological, and some more philosophical
20. Analysis
Superlinear Speedup
The first technological reason is due to cache memory
Cache memory is a lot faster than main memory so if you can fit your problem entirely in cache, it will run faster
For example, a Core i7: perhaps 200 cycles to access main memory, compared to 2 cycles for a L1 cache hit
 processors might have times the cache of a single processor, so a problem spread across the processors might well fit in the larger amount of cache available
Of course, this takes a certain kind of low-communication, easily dividable problem to work; and the right hardware
21. Analysis
Superlinear Speedup
Note: modern CPUs tend to share cache across multiple cores, so it is unlikely cores has times as much cache
(This helps with cache coherence!)
22. Analysis
Superlinear Speedup
Another (more philosophical) reason is due to the way speedup is defined

What are we comparing against what?
Here is an example to illustrate the issue
We have bubblesort running on a uniprocessor: we wish to make it run on a parallel machine
23. Analysis
Superlinear Speedup
One way of doing this is:
· split the data into equal halves
· bubblesort each half in parallel
· merge the two sorted lists together
This is 2-way parallelism
The middle step can be itself parallelised recursively: split into two, bubble and merge, giving 4-way parallelism
Depending on the number of processors we have, we can keep recursively dividing
24. Analysis
Superlinear Speedup
This seems like a reasonable way to implement bubblesort on a parallel machine
What is the speedup? We need to find out how long each version takes to run
Normal bubblesort takes time comparisons in the average case to sort items
So bubblesorting the two halves (in parallel) takes time

25. Analysis
Superlinear Speedup
Merging values takes , giving a total of

time
This gives speedup

Already superlinear!
26. Analysis
Superlinear Speedup
On 4 processors we could repeat: the speedup we get is
Clearly this a wonderful algorithm
If we were to implement it, we would truly see these speedups
What is happening?
27. Analysis
Superlinear Speedup
Consider the same subdividing algorithm on a single processor
Time to bubblesort halves: ; time to merge ; total
“Speedup”

So we win even on a uniprocessor
28. Analysis
Superlinear Speedup
What is happening is that bubblesort is a really poor sorting algorithm on average
By subdividing and merging we are converting it into a different kind of sort: if we recurse all the way we have actually implemented a merge sort
Merge sort has complexity
29. Analysis
Superlinear Speedup
The point of this is that by converting bubblesort to be parallel in this way we are fundamentally changing it
This is an extreme case, but in general we must be care when computing speedups that we are comparing like with like
It may not always be possible to have a suitable parallel version of an algorithm: in such a case “speedup” is not meaningful
In most real cases we don’t get this effect, but it’s worth being aware that it can happen
30. Analysis
Speedup
Some people go further and define speedup as

but this has its own problems, not least that we might not know the best possible sequential way of doing things
And we now might be comparing two completely unrelated algorithms
31. Analysis
Speedup
In a similar vein, another reason for getting superlinear speedups is that the original, sequential, program was poorly written
Perhaps the programmer spent more time thinking about the parallel version, or gained more experience from writing the sequential version, making it substantially better code than the sequential version
This is much the same as the “transform bad algorithm to better algorithm” above, but is now “transform bad code to better code”
So, again, we are not really comparing like with like
32. Analysis
Speedup
And occasionally we see superlinear speedup due to randomness
If the data contains random numbers, or there is something that adds an elements of randomness to the run time we can get a superlinear speedup
This time due to the parallel version “getting lucky” and hitting a special case that finishes early relative to your measured sequential version
So also not comparing like with like
You would need to ensure each run had the same randomness to be properly comparable; or run many times and take an average time
33. Analysis
Speedup
In conclusion: speedup is a nice and simple, easy to understand measure: but we have to take care over what it is telling us
Some problems are pathologically parallel, meaning they fall easily into parallel parts that have a minimum of communication
For such problems it is easy to get good speedups
E.g., graphics rendering, weather forecasting, parameter sweeping, etc. Often they are data parallel problems
Other problems fare less well — in terms of speed — from parallelisation!
rId38.svg

	

 p

 Amdahl's

 limit

 speedup = p

 speedup

rId41.png
pessup=p.

rId42.svg

	

 p

 Amdahl's

 limit

 Actual

 speedup

 speedup = p

 speedup

rId45.png
gty =p.

rId56.svg

	

 1

 1

 p

 S

 p

rId59.png

rId62.svg

	

 1

 1

 S

 p

 p

rId65.png

