Parallel Computing
CM30225
Russell Bradford
2023/24
1. Background
You have a problem you wish to solve faster. What do you do?
1. You think hard and devise a better solution
Clearly this is a stupid thing to do. Programmers are much too lazy to do this
2. You get a faster processor
Better. This used to work, but not any more: processors have pretty much levelled off at around the 3-5GHz mark and don’t seem to be getting faster
2. Background
3. You get a multicore machine and run the problem in parallel
This must be the solution!
Isn’t it?
One purpose of this Unit is to make you realise this is actually the hardest way of doing it!
In reality, No. 1 is best, then No. 2, lastly No. 3
3. Background
Consider the following:
· it takes one person ten months to build one house
· it takes ten people one month to build one house
· it takes 100 people one-tenth of a month to build one house
Why is the last so implausible?
4. Background
When there are 100 people running about they will get in each others’ way; fight over limited resources like bricks; some will have to sit and twiddle their thumbs while they wait for others to finish: you can’t plumb a bathroom until the bathroom has been built
And so on
And when there are more workers, you will need more managers — not building themselves but making sure workers are doing the right things
Simply adding more people won’t necessarily get it done faster
Sometimes adding more people will make it go slower as they get in each others’ way
5. Background
But we can scale in a different way:
· it takes one person ten months to build one house
· it takes ten people ten months to build ten houses
· it takes one person 100 months to build ten houses
· it takes ten people 100 months to build 100 houses
This is much more believable: adding more people we can build more houses simultaneously
In reality, we won’t get a perfect speedup like this, due to resource contention issues, but we can get pretty close
6. Background
Most people think parallel computing is about making things go faster
Up to a point, but they will soon be disappointed
Much more likely to succeed is to make things larger
This scales much better
7. Background
The first is process parallelism, also called task parallelism
The second is data parallelism
Two very different ways of getting more in a given amount of time
8. Background
You all have had the situation where someone tries to help you do something and it’s ended up taking longer
There is the basic time it takes to solve the problem: then there are substantial overheads in the coordination of the parts of the solution
The overheads can easily be larger than the problem itself
This is the reality of parallel computing
Often a parallel version of a small problem will be slower than the sequential version
Only when the problem is made large enough to overcome the overheads will it become faster than doing it sequentially
9. Background
So cost (the number of cpu cycles) of a parallel computation
Ideally, we want the cost of management of parallelism to be minimal
But, if you are not careful, or the problem is such that this is inevitable, we can find that the cost of management of parallelism can dominate
10. Background
Another huge issue is that people have enough difficulties with programming sequential machines
Some would say that sequential programming is not yet a “solved” problem
Parallel programming is much harder
If you think you understand parallel programing, you definitely don’t
11. Background
You have all the issues of sequential programs plus lots more
And they are issues that many programmers have difficulty even understanding
Particularly as they have been trained to program for sequential machines and have habits and assumptions that are simply invalid for parallel machines
12. Background
Have I convinced you that parallel programming is difficult yet?
Well, it’s worse than you can imagine!
13. Background
You will see the terms parallel and concurrent, with some people using them interchangeably
But it is sometimes important to make a distinction between the two
concurrent means your computation has separately executable parts
parallel means those parts are being executed at the same time
Concurrency is about structure, parallelism is about execution
14. Background
So, “concurrent” means in parts, and those parts may or may not be running simultaneously
For example, they might be scheduled one at a time on a single core CPU)
And “parallel” when we are explicitly talking about stuff running at the same time on multiple pieces of hardware
Concurrency is about dealing with lots of things at once. Parallelism is about doing lots of things at once.
Rob Pike
15. Background
Asynchronous programming is an example of non-parallel concurrency.
This has been around for a long time in many disguises: futures, promises, coroutines, generators and others
The idea here is that when some code would block, e.g., waiting for some I/O, rather than the processor sitting and waiting doing nothing, the code should direct the processor to execute some other task
Later, when the I/O is ready, the processor can come back to where it was and continue from there
16. Background
The code makes its own decision on what to do: moving between different parts of code, ensuring the processor is always actively working
This is scheduling within the code, without involvement of the Operating System
As we know, any call to the OS entails a large amount of CPU overhead, which we avoid here
These are major points of async programming: avoid OS overheads and keep the processor busy
17. Background
So async code is concurrent (structural), but not parallel (execution)
Programming async code is very complicated and shares many features with programming parallel code
Modern programming languages are starting to support async programming natively, e.g., JavaScript, Swift, C++, Rust, Python and more
Constructs in the languages hide varying amounts of the gory details of choosing and switching between tasks
18. Background
Async programming is good in cases where we have lots of tasks that mostly wait, e.g., I/O
Parallel programming is good in cases where we have lots of tasks that mostly compute
Async is cooperative while parallel is preemptive
Async is for waiting in parallel
19. Background
In this unit we shall be concentrating on parallelism (though lots of what we say also applies to async programming, too)
Exercise Reflect on how you might use both async and parallel programming in one program
20. Background
In contrast to concurrent and parallel, you might hear of serial and sequential both being used to describe non-concurrent/non-parallel systems
Serial and sequential mean the same thing
21. Background
Moore’s Law
Why is parallelism an important topic these days?
There is a famous “law” that describes how hardware has progressed over the years
It is an observation on how the components in integrated circuits were shrinking over time as engineering advances were made:
Moore’s Law (1965):
the number of transistors in a chip doubles every two years
22. Background
Moore’s Law
There are a number of points to be made
· it’s not a “law” in any real sense, but an observation on how chips progress
· Moore did not say speed doubles, as often mis-quoted
· some variants say “18 months” instead of “two years”, but the history of this statement is complex
· it is somewhat self-fulfilling, as engineers tend to use it as a target for the development of each next generation of chips
23. Background
Moore’s Law
There is some economics in there, too: the profit margins on silicon wafers mean that it is better to have fewer larger chips than lots of smaller chips
So CPUs tend to keep to the same area, meaning a CPU will have more and more transistors, not that we have more smaller CPUs
24. Background
Moore’s Law
[image: Pics/ct.pdf]
Log of speed and transistor count against date of Intel processors
25. Background
Moore’s Law
We can see why people thought that Moore’s Law was about speed: for a long time both transistor count and speed went up exponentially
In 2005 people would have said that CPUs would be running at 480GHz by 2020
However, over the last few years speed has stopped increasing
But, crucially, the transistor count continues to increase
CPUs stay the same physical size
26. Background
Moore’s Law
Engineer:
What are we going to do with those extra transistors?
Marketer:
How are we going to convince people to buy the new CPUs?
Solution:
multicore processors
Chips with more than one CPU on them
27. Background
So now chips in new PCs are all multicore
Dual and quad core is everywhere; 64 core processors are around; 128 cores are arriving soon (PC-style architecture)
Many cores is great, but we are going to have to find out how to make best use of them
But simply having two CPUs generally won’t make our program go twice as fast: overheads like interference and communication between parts of the computation is going to be a problem
28. Background
To repeat: all this hardware is all wonderful except for one point
This computational power is only useful if we can write the software to exploit it
Your phone might have eight cores, but it is likely very little software it runs is capable of using all their power simultaneously
Software is far behind hardware and has a lot to do to catch up
We are still in the dark regarding parallel software
29. Background
A Brief Aside
Note that Moore’s Law also applies to memory: memory chips have been doubling in capacity at a similar (perhaps faster?) rate
But the speed of delivery of data from memory to processor(s) has always lagged behind the speed of processors
Giving a problematic gap between speed of processors and speed of memory (both in bandwidth and latency)
The gap has decreased a little over the last few years, but on the other hand multiple processors need more memory bandwidth
We shall see memory is a big bottleneck in parallel systems
30. Background
Moore’s Law
by
Moore’s Law has been going for years so far
It must come to an end at some point: the end has been predicted many times in the past, but so far technology has kept moving onwards
Chip designers think it will keep going for several years yet, some predict decades
Moore himself thinks perhaps it will last until 2025
And — looking at Intel’s products the last few years — it might currently be taking 5 years to double transistor counts
31. Background
Moore’s Law
Exercise Some current top end chips have over 100 billion transistors, and 7000 cores. If Moore’s Law continued, how many transistors and cores would they have in 10 years? In 20 years?
Exercise Read about Moore’s Second Law (aka Rock’s Law)
32. Background
Moore’s Law
Software is getting slower more rapidly than hardware is becoming faster
Wirth’s Law
Software efficiency halves every 18 months, compensating Moore’s law
David May
The speed of software halves every 18 months
Gates’ Law
What Intel giveth, Microsoft taketh away
Anon
rId46.pdf

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 1x1012

 1970 1980 1990 2000 2010 2020 2030

"cspeed"
"tcount"

