Networking
CM30078/CM50123
Russell Bradford
2023/24
1. TCP Timers
Next: TCP has several timers. We have seen
· 2MSL
· Delayed ACK
These are just the start!
2. TCP Timers
Retransmission Timer
We now consider the timer that determines when to resend in the absence of an ACK: a retransmission timeout (RTO)
· too short a time is wasteful on slow but otherwise reliable networks
· too long a time is poor for the data rate
And we want a dynamic behaviour that adapts to changing conditions rather than a simple fixed timeout
3. TCP Timers
Retransmission Timer
If the network slows down (e.g., heavy other traffic causes less bandwidth for your packets) the timeout should increase
If the network speeds up (e.g., other traffic reduces) the timeout should decrease
Jacobson gave an easy algorithm: keep a variable, the round trip time RTT for each connection
RTT is the best current estimate for the time of a segment going out and the ACK returning
If we haven’t received an ACK in approximately this time, deem it lost
4. TCP Timers
Retransmission Timer
In more detail: when a segment is sent, its timer starts
If the ACK returns before the timeout, TCP looks at the actual round trip time M and updates RTT using

 is a smoothing factor, usually 7/8 for easy arithmetic
5. TCP Timers
Retransmission Timer
Thus RTT increases or decreases smoothly as conditions change and doesn’t get too upset by the occasional straggler that is unusually late (or early)
Next, we need to determine a timeout interval given RTT
This should take the standard deviation of the RTT into account: if the measured RTTs have a large deviation it makes sense to have a larger timeout
True standard deviations are tricky to compute quickly (square roots), so Jacobson suggested using the mean deviation
6. TCP Timers
Retransmission Timer
Mean deviation:

 is close to the standard deviation and is much easier to calculate quickly
A typical value for is 3/4
7. TCP Timers
Retransmission Timer
The timeout value is set to

The 4 and the values for , were found to be good in practice
When sending a segment (or, in practice, a burst of segments) set the timer to expire after time
8. TCP Timers
Retransmission Timer
What if the timer expires before the ACK is received?
· we resend the segment, of course
· but we also need to update RTT somehow
But we can’t use RTT of the resent segment as we might get the somewhat delayed ACK of the original segment, not of the resent segment
9. TCP Timers
Retransmission Timer
[image: Pics/karn.svg]
Retransmission Ambiguity
This is the retransmission ambiguity problem
10. TCP Timers
Retransmission Timer
The measured RTT would be much too small
Karn’s algorithm is to double the timeout on each failure, but do not adjust RTT
When segments start getting through normal RTT updates continue and RTT quickly reaches the appropriate value
This doubling is called exponential backoff
Alternatively, as is common these days, we have the option header timestamp and this solves the retransmission ambiguity directly
11. TCP Timers
Persist Timer
The next timer in TCP is the persist timer, sometimes called the persistence timer
Its role is to prevent deadlock through the loss of window update segments
12. TCP Timers
Persist Timer
[image: Pics/persist.svg]
Persist timer
A sends to B; B replies with an ACK and a window size of 0; A gets the ACK and holds off sending to B; B frees up some buffer space and sends a window update to A; This is lost; Now A is waiting for the window update from B and B is waiting for more data from A: deadlock; To prevent this, A starts the persist timer when it gets the 0 window from B; If the timer expires, A prods B by sending a 1 byte segment: a window probe; If B gets this, the ACK will contain B’s current window size; If the window is still 0, A resets the timer and tries again later
13. TCP Timers
Persist Timer
The persist timer starts with something like 1.5 sec, doubling with each probe and is rounded up or down to lie within 5 to 60 seconds
So the timeouts are 5, 5, 6, 12, 24, 48, 60, 60, 60, …
The persist mechanism never gives up, sending window probes until either the window opens, or the connection closes
The persist timer is unset when a non-zero window is received
14. TCP Timers
Keepalive Timer
Yet another timer in TCP is the keepalive
This one is an optional part of the TCP/IP standard, and some implementations do not have it as it is occasionally regarded as controversial
When a TCP connection is idle no packets flow between source and destination
So part of the path could break and be restored and the connection is none the wiser
This gives us a bit of resilience against flaky networks
15. TCP Timers
Keepalive Timer
On the other hand, sometimes a server wants to know if a client is still alive: each client TCP connection uses some resources in the server (buffers, timers, etc.)
If the client has crashed these resources could better be used elsewhere
To do this the server sets a keepalive timer when the connection goes idle
A typical value is 2 hours
16. TCP Timers
Keepalive Timer
When the timer expires, the server can send a keepalive probe
This is simply an empty segment (i.e., no data)
If the server gets an ACK, everything is OK
If not, the server might conclude the client is no longer active
17. TCP Timers
Keepalive Timer
There are four cases
1. the client is up and running: the keepalive probe is ACKed and everybody is happy. The keepalive timer is reset to 2 hours
1. the client has crashed or is otherwise not responding to TCP: the server gets no ACK and resends after 75 seconds. After 10 probes, 75 seconds apart, if there is no response, the server terminates the connection with “connection timed out” sent to the server application
18. TCP Timers
Keepalive Timer
1. the client has crashed and rebooted. The client gets the probe and responds with a RST. The server gets the RST and terminates the connection with “connection reset by peer” sent to the application
1. the client is up and running, but is unreachable, e.g., broken routing. This is indistinguishable from case 2, so the same events ensue
19. TCP Timers
Keepalive Timer
There are several reasons not to use keepalive
· they can cause a generally good connection to be closed because of a temporary failure of a router
· they use bandwidth
· some network operators charge per packet
20. TCP Timers
Keepalive Timer
The latter two are not particularly good arguments as the cost is just a couple of packets every 2 hours
It is usually possible to disable keepalive in the application: some people think that keepalive should not be in the TCP layer, but should be handled by the application layer (i.e., the non-existent session layer)
21. TCP Strategies
Many other strategies to improve throughput have been proposed
Some have been widely adopted
Exercise Read about the problems of long fat pipes
Exercise Read about Protect Against Wrapped Sequence numbers (PAWS), Selective Acknowledgement (SACK)
22. TCP Extensions
Exercise Multipath TCP (MPTCP) has been suggested both for extra performance, failover and for mobile hosts that roam between, say, cellular and Wi-Fi (used in iOS7). It layers one MPTCP connection over one or more TCP connections, e.g., using both the cellular and Wi-Fi links simultaneously for one MPTCP connection
Exercise And potential alternatives to TCP. Read about TCP for Transactions (TTCP), Stream Control Transmission Protocol (SCTP), Datagram Congestion Control Protocol (DCCP)
23. TCP Alternatives
QUIC (originally “quick UDP Internet connection”, now just a name, not an acronym) is a Google-originated alternative to TCP (RFC9000)
Originally designed as a transport layer for HTTP/3 (the next version of HTTP), QUIC can be used as a general transport protocol
It is reliable, connection oriented, has congestion control, is encrypted and authenticated and is transmitted within UDP datagrams (port 443, mostly)
24. TCP Alternatives
The last is important as routers have a tendency to mess with (or drop) packets if they don’t recognise the protocol
There have been several new protocols in the past that have failed to gain popular use as routers would not recognise them
In fact, the QUIC header is encrypted (inside the UDP packet) to prevent routers inspecting or trying to modify it
25. TCP Alternatives
Note: QUIC uses UDP purely to avoid router problems: it would be better to layer directly over IP, but history won’t let us do that
QUIC is not a lightweight protocol: it is as heavyweight as TCP+TLS
It is “quick” in the sense of “fast”, not “simple”
26. TCP Alternatives
Support for QUIC is growing in OSs and applications, for example the Chrome browser uses QUIC whenever possible to fetch Web pages
It has a 3 way opening handshake, like TCP, but this handshake also negotiates encryption
This saves time over the current schemes that open TCP and then establishes encryption (see TLS, later)
27. TCP Alternatives
Multiple data streams are multiplexed over a single connection, again saving time over TCP that would need to start up a connection for each stream
For example, a Web page might fetch dozens of items (text, images, JavaScript, …) from the same server
These could all be sent within a single QUIC connection
28. TCP Alternatives
Current browsers do try to multiplex multiple streams over a single TCP connection, but this causes problems as an error in one stream causes TCP’s error mechanisms to kick in, affecting all streams in the connection, even if the other streams had no error in themselves
QUIC does this multiplexing more efficiently, never stopping a good stream within a connection
QUIC manages errors at the stream level, not the connection level
29. TCP Alternatives
And:
· more sophisticated ACK mechanisms
· connection migration, e.g., WiFi to cellular
· sophisticated flow control (still under development)
· and lots of other stuff building on the knowledge gained since TCP was first invented
30. TCP Alternatives
QUIC is growing, but it will be a long time before it replaces TCP (lots of code to rewrite!)
And TCP with TLS has had decades of tuning, so QUIC has a lot of work to do to catch up
Exercise Read about how QUIC reduces connection overheads and about the head-of-line blocking problem
Exercise Read about SPDY, the predecessor to QUIC, and its relationship to HTTP/2
Exercise Read about the middlebox (router) problem and why it means that new protocols will have a hard time on the Internet
31. UDP Alternatives
Exercise And don’t forget UDP: UDPLite, RUDP, UDT, etc.
32. TCP
TCP is a huge success: from 1200 bits/sec telephone lines to gigabit networks and beyond it has turned out to be massively flexible and scalable
It took a lot of work, though!
33. TCP
Here is a small part of the output from ss -io (socket statistics) on a Linux machine:
tcp ESTAB 0 0 172.16.2.1:34956 34.117.14.220:https
timer:(keepalive,31sec,0)
ts sack cubic wscale:7,7 rto:220 rtt:18.341/0.5 ato:40 mss:1368
pmtu:1420 rcvmss:647 advmss:1368 cwnd:2 ssthresh:7
bytes_sent:7179 bytes_retrans:240 bytes_acked:6939
bytes_received:6747 segs_out:515 segs_in:508 data_segs_out:198
data_segs_in:188 send 1.19Mbps lastsnd:28652 lastrcv:29228
lastack:28632 pacing_rate 2.39Mbps delivery_rate 634kbps
delivered:191 app_limited busy:32268ms retrans:0/8
rcv_space:13800 rcv_ssthresh:64156 minrtt:17.318
rId35.svg

	

	

	

	

	

 RTT?

 ACK

 timeout, resend

 send

 ACK

rId38.png
T

rId45.svg

	

	

	

	

	

	

 data

 ACK, ws = 0

 lost

 ACK, ws = n

 persist timeout

 ACK, ws = m

 window probe

 persist timeout

rId48.png
i

