Networking
CM30078/CM50123
Russell Bradford
2023/24
1. Networks
The OSI Model
The seven OSI layers are
1. Physical
1. Data Link
1. Network
1. Transport
1. Session
1. Presentation
1. Application
2. Networks
The OSI Model: Physical Layer
The physical layer (PHY) or layer 1 is the hardware layer and deals with the transmission of bits over a channel
For example:
· what voltages to use or colours of light pulses or radio wavelengths to use
· what encoding for bits; how long (in time) a bit should be
· how many wires to use in a cable
· what plugs and sockets to use on the cable
· and many more
Generally, anything to do with choices regarding hardware
3. Networks
The OSI Model: Data Link Layer
The data link layer, also called the media access layer (MAC) or layer 2, takes the physical layer and tries to create a channel where there are no undetected errors of transmission
Note “undetected”: we know networks are not 100% reliable (e.g., wireless networks in particular) so we presumably want to take into account possible errors and deal with them: the ISO standard recommends you think about that here
A typical MAC layer sends the data as a sequence of frames (recall the packet nature of the Internet). A frame is a chunk of bytes, maybe tens or thousands of bytes long
4. Networks
The OSI Model: Data Link Layer
If a frame is corrupted, maybe the MAC layer can resend it; or send a message to the next layer indicating a problem
A popular choice in real standards is to do nothing at all: let a higher layer figure out what’s gone wrong and choose a remedy
Again: it is up to the standard we are designing as to what actually happens. The layering model just says it is a good idea to consider this kind of thing here
In real implementations, this layer is often strongly intertwined with the physical layer and we tend to talk about both of them together
5. Networks
The OSI Model: Network Layer
The network layer, layer 3, controls the operation of the network, particularly the issue of routing data from source to destination
Also, it can deal with congestion: where there is too much data for a particular link it might route some data via another link, or use flow control to slow down the rate of transmission
Or speed up the rate if things are going well
Accounting might be managed in this layer: counting the number of bits so we can bill the user
And quality of service: e.g., ensuring there is always enough bandwidth to stream a video
6. Networks
The OSI Model: Transport Layer
The transport layer, layer 4, accepts data from the session layer (layer 5) and arranges it into packets suitable for the network layer: packetisation
Similarly, it takes packets from the network layer (layer 3) and reassembles them into the original data stream: depacketisation. This might need to deal with packets arriving out of order
You might want to think about reliability in this layer: ensuring the data received is the same as the data sent. No corruption or loss in the data
Curiously, reliability is not always a requirement of a network!
7. Networks
The OSI Model: Session Layer
The session layer, layer 5, manages sessions between source and destination.
· Establishing and terminating connections; e.g., a remote login session
· Restarting interrupted connections
Sessions can be quite short, e.g., just long enough for an email or Web page to be transmitted; or arbitrarily long
In general, a session is just some logically connected set of exchanges that have some unified identity
8. Networks
The OSI Model: Session Layer
For example, if the network crashes and reboots halfway through a big data transfer, the session can be picked up from where it left off, rather than starting again
You may already know that protocols like HTTP don’t automatically pick up from where they left off
This tells us there is possibly a gap or omission somewhere in the relevant protocols: something they didn’t address in the design
This may have been through deliberate choice; but it’s equally likely they just didn’t think about it
9. Networks
The OSI Model: Presentation Layer
The presentation layer, layer 6 provides some things to help us retain the meaning of data
In particular, it decides on representations of data, such as characters, integers and floating point values, colours, sounds and so on so that the source and destination can agree on the data communicated
10. Networks
The OSI Model: Presentation Layer
So if the source wants to send the number 42, the presentation layer deals with encoding this in a suitable way as (say) some bits, which are then transmitted (passed to layer 5)
And the destination presentation layer can determine that this particular sequence of bits it has just received (from layer 4) represents the number 42
They can agree on “42” regardless of how each host chooses to represent integers internally
11. Networks
The OSI Model: Application Layer
The application layer, layer 7, is the layer application programmers use: ideally programmers would not have to worry about lower layers in their application
It contains protocols like HTTP for the Web, SMTP for email, and so on
Built on top of these protocols are the applications that the users see, e.g., Firefox or Chrome for the Web, Outlook or Thunderbird for email
12. Networks
Layering Models
Conceptually, data from an application is passed down through the layers until it reaches the hardware: i.e., through a sequence of pieces of software that perform the functions of each layer
As it passes from later to layer it is encapsulated: a transformation of the data in such a way that the layer below can cope with it transparently
And in a way that it can be untransformed back again
13. Networks
Layering Models
At each layer, the transformation might
· add an identifying header or trailer or both that is needed for the functionality of the layer
· encode any bit patterns that might be misinterpreted or mis-transmitted by the next layer
· put items in a standard form, e.g., integers into a well-known format
· do some arbitrarily complicated manipulation
· do nothing at all!
14. Networks
Layering Models
[image: Pics/osi.svg]
A possible (but unlikely) OSI encapsulation
15. Networks
Layering Models
[image: Pics/osi3.svg]
Data is encoded and decoded
16. Networks
Encapsulation
An example. Some early modems treated byte values less than 32 as commands to the modem, not data to be transmitted
E.g., value 4 might mean “end of transmission” and the modem should drop the connection
What do you do if your data happens to contain the value 4?
You can’t just send it, as the modem would interpret the data as a command and end the connection
17. Networks
Encapsulation
So you need to transform the data somehow so that “4” is never seen by the modem in the datastream
And the transformation must be reversible, so the other end can reconstruct the 4
This is why encapsulation is necessary: so data can be transmitted accurately, even if you are using weird hardware
18. Networks
Byte Stuffing
In this case, the transformation often used was byte stuffing: the link layer could replace byte value “04” by, say, a pair of bytes “DB D4” (hexadecimal)
Both bytes will be transmitted unmolested by the modem
The link layer at the other end could recognise this pair and replace it by the single byte “04”
The “DB” is called an escape character, and its presence in the datastream means the next character is encoded, so special action must be taken
19. Networks
Byte Stuffing
Take a while to think of the issues this raises: what happens if our original data contained the pair of values “DB D4”?
We can’t just send “DB D4” as the other end will replace them by “04”
Not only do the bytes under 32 need to be stuffed, so does the escape character
For example, “DB” in the original data could be stuffed as “DB FF”
The datastream “DB D4” becomes “DB FF D4”
With byte stuffing, we exchange some expansion of the data for the correct transmission of that data
20. Networks
This kind of situation is why encapsulation exists
Of course, modern hardware doesn’t act like early modems, but the principle remains
21. Networks
Layering Models
Say you want to send an email. In a strict implementation adhering to the layers the following might happen
· The email application might add a standard email header (From, To, etc.)
· This is passed to the presentation layer. As far as this layer is concerned it gets a chunk of text from the application layer
· It doesn’t (or shouldn’t) know that the first few characters are an email header
· It may transform the characters in some way, e.g., converting video into a transmissible format; it might prepend its own header to indicate what it has done
22. Networks
Layering Models
· This is passed to the session layer. As far as this layer is concerned it gets a bunch of bits from the previous layer
· It doesn’t (or shouldn’t) know that the first few bits are a layer header
· It may transform the bits in some way; it might prepend a header to help it manage sessions
· And so on down through the layers
Eventually, the physical layer transmits some bits
23. Networks
Layering Models
At the destination a bunch of bits is received by the hardware
We now proceed up the layers, unwrapping and untransforming as we go
And, eventually, we get the original data arriving at the application (we hope)
So why do this as it seems so wasteful?
24. Networks
Layering Models
If the original data are small the data transmitted on the wire can be mostly headers from the various layers
[image: Pics/osi2.svg]
Encapsulation overhead
25. Networks
Layering Models
Surely it is easier just to put the original data on the wire?
· Encapsulation adds complexity to the implementation
· It adds overhead (both space and time)
· thereby reducing effective throughput
But it turns out layering and encapsulation actually reduces overall complexity, just like breaking a large program into functions/objects/whatever does for programming
It also gives flexiblity
26. Networks
Layering Models
Suppose we have a 1Gb network card in our machine and someone comes along with a 10Gb card
Because the physical layer is (mostly) separate from the data link layer we can just write a new standard for the 10Gb physical layer and slot it in where the old 1Gb standard was
The upper layers needn’t know anything has changed
And we can slot in the implementation for the new hardware in exactly the same way
We don’t have to rewrite our email application (and Web browser, and all our other applications) because of the upgrade
27. Networks
Layering Models
Similarly for all the other layers: we can replace specifications in a layer and implementations of those specifications without affecting the rest of the stack
In principle, you could use carrier pigeons as the physical layer and your browser should work unchanged
Apart, perhaps, from speed
Someone really did this once!
Exercise Read RFC1149
28. Networks
Layering Models
And as each layer simply hands over to the next, it doesn’t actually matter what the next layer “really” does
As long as it has the right behaviour, it doesn’t matter how it is actually implemented
This enables useful tricks like tunnelling, which we shall look at later
rId46.svg

 Data

 Data

 AH

 PH

 SH

 TH

 NH

 DH

 DT

 Bits

 Data

 Data

 Data

 Data

 Data

 user data

 application

 presentation

 session

 transport

 network

 data link

 physical

rId49.png
-

rId52.svg

 Data

 Data

 AH

 PH

 SH

 TH

 NH

 DH

 DT

 Bits

 Data

 Data

 Data

 Data

 Data

 Data

 Data

 AH

 PH

 SH

 TH

 NH

 DH

 DT

 Bits

 Data

 Data

 Data

 Data

 Data

 physical network

	

	

	

 source

 destination

rId55.png
s | Dus destnaion__| D
| ous i o
] o £
s ow 1
m [b
i [o b

o ou] b
e

S~

physica necwerk.

rId73.svg

 Data

 Data

 AH

 PH

 SH

 TH

 NH

 DH

 DT

 Bits

 Data

 Data

 Data

 Data

 Data

 user data

 application

 presentation

 session

 transport

 network

 data link

 physical

rId76.png
i o [

