
New Complexity Bounds for Cylindrical
Decompositions of Sub-Pfaffian Sets

Savvas Pericleous
Nicolai Vorobjov

Abstract

Tarski-Seidenberg principle plays a key role in real algebraic geometry and its
applications. It is also constructive and some efficient quantifier elimination
algorithms appeared recently. However, the principle is wrong for first-order
theories involving certain real analytic functions (e.g., an exponential function).
In this case a weaker statement is sometimes true, a possibility to eliminate one
sort of quantifiers (either ∀ or ∃). We construct an algorithm for a cylindrical
cell decomposition of a closed cube In ⊂ Rn compatible with a semianalytic
subset S ⊂ In, defined by analytic functions from a certain broad finitely
defined class (Pfaffian functions), modulo an oracle for deciding emptiness of
such sets. In particular the algorithm is able to eliminate one sort of quantifiers
from a first-order formula. The complexity of the algorithm and the bounds on
the output are doubly exponential in O(n2).

1 Introduction

Semianalytic sets are defined as subsets of points in Rn satisfying Boolean
combinations of atomic formulae of the kind f > 0, where f ’s are real analytic
functions defined in a common open domain G ⊂ Rn. Subanalytic sets are
defined as images of relatively proper real analytic maps of semianalytic sets.
If functions f are polynomials, then these two classes of sets coincide (Tarski-
Seidenberg principle). An equivalent formulation of this statement is that the
first-order theory of reals admits quantifier elimination. It plays a key role in
many aspects and applications of real algebraic geometry. However, Tarski-
Seidenberg principle is wrong already if one of atomic f ’s is an exponential
function, in which case a subanalytic set may not be semianalytic [16]. Thus,
the quantifier elimination is not generally possible in a first-order theory with
real analytic functions. A theorem due to Gabrielov [6, 7] shows however
that at least one sort of quantifiers (either ∀ or ∃) can be eliminated. This is
equivalent to saying that the complement to a subanalytic set is subanalytic.

It is well-known that Tarski-Seidenberg principle is constructive. Orig-
inal Tarski’s proof provided an algorithm for quantifier elimination (com-
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puting of a projection) with a non-elementary complexity. In mid-70-s, [3]
and [20] proposed elementary algorithms (doubly-exponential in the number
of variables n). In recent years the problem had received a significant atten-
tion, had attracted a number of powerful mathematical techniques, and as
a result some very efficient quantifier elimination algorithms were designed
(see [1, 11, 12, 17]).

Attempting to extend the complexity results from algebraic to real an-
alytic case, we have firstly to restrict the class of real analytic functions to
a finitely defined subclass which would include as many as possible impor-
tant analytic functions (for example, all algebraic functions, exponentials,
logarithms, etc.), and for whose members a natural concept of a size or for-
mat would be definable. A suitable class of such kind is formed by Pfaffian
functions. Pfaffian functions are solutions of triangular systems of first order
partial differential equations with polynomial coefficients. Semi-Pfaffian sets,
defined by systems of equations and inequalities between these functions, are
characterized by global finiteness properties [13, 14] (formal definitions are
given in Section 2). This means that their basic geometric and topological
characteristics can be explicitly estimated in terms of formats of their defin-
ing formulae. Sub-Pfaffian sets are relatively proper images of semi-Pfaffian
sets, and their complements are also sub-Pfaffian.

A common technique for proving quantifier elimination results is con-
structing a cylindrical cell decomposition of the set defined by the quantifier-
free part of a given formula (see definition in the next section), i.e. represent-
ing this set as a disjoint union of geometrically simple cells, homeomorphic
to open balls of some dimensions, which induces (via projections) similar
decompositions on a certain filtration of subspaces. This method was used
in [3,20] to obtain doubly-exponential upper complexity bounds for algebraic
case (more efficient modern algorithms [1,11,12,17] don’t use cylindrical de-
composition).

The technique of cylindrical cell decomposition was applied to Pfaffian
case in the context of model-theoretic study of o-minimality (see [5,19]). The
complexity estimates which can be extracted from these works are apparently
non-elementary.

Recently Gabrielov and Vorobjov in [9] suggested an algorithm which
produces cylindrical cell decompositions of sub-Pfaffian sets in Rn. In par-
ticular, this algorithm finds complements to sub-Pfaffian sets, in other words
eliminates one sort of quantifiers from prenex first-order formulae involving
Pfaffian functions. As a model of computation [9] uses a real numbers ma-
chine (Blum-Shub-Smale model) [2] equipped with an oracle for deciding the
feasibility of any system of Pfaffian equations and inequalities. The com-
plexity bound of this algorithm, the number and formats of cells are doubly
exponential in O(n3) (assuming that each oracle call has a unit cost).

In the present paper we obtain a new upper complexity bound by using a
very different and more elementary technique. As in [9], this bound is doubly
exponential in the number of variables and, being formally incomparable with
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the one from [9], is better for a long Pfaffian chain for defining functions. We
rely on the two known results: the Khovanskii’s upper bound on the number
of connected components of a semi-Pfaffian set [13,14] and Gabrielov’s algo-
rithm for computing the closure of a semi-Pfaffian set [8]. Unlike [9], we do
not use a stratification algorithm.

2 Pfaffian functions and sub-Pfaffian sets

Definition 2.1. (See [13,14] , and [10].) A Pfaffian chain of the order r ≥ 0
and degree α ≥ 1 in an open domain G ⊂ Rn is a sequence of real analytic
functions f1, . . . , fr in G satisfying Pfaffian equations

dfj(X) =
∑

1≤i≤n
gij(X, f1(X), . . . , fj(X))dXi

for 1 ≤ j ≤ r. Here gij(X, Y ) are polynomials in X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yj) of degree not exceeding α. A function

f(X) = P (X, f1(X), . . . , fr(X))

where P (X, Y1, . . . , Yr) is a polynomial of degree not exceeding β ≥ 1 is a
Pfaffian function of order r and degree (α, β).

Example 2.2.

1. Pfaffian functions of order 0 and degree (1, β) are polynomials of degree
not exceeding β.

2. The exponential univariate function f(X) = eaX is a Pfaffian func-
tion of order 1 and degree (1, 1) in R, due to the equation df(X) =
af(X)dX.

3. The function f(X) = 1/X is a Pfaffian function of order 1 and degree
(2, 1) in the domain X �= 0, due to the equation df(X) = −f2(X)dX.

4. The logarithmic function f(X) = ln(|X |) is a Pfaffian function of order
2 and degree (2, 1) in the domain X �= 0, due to the equations df(X) =
g(X)dX and dg(X) = −g2(X)dX with g(X) = 1/X.

For more examples of Pfaffian functions see [10, 14].

Lemma 2.3. (See [10,14])

1. The sum (resp. product) of two Pfaffian functions, f1 and f2, of or-
ders r1 and r2 and degrees (α1, β1) and (α2, β2), is a Pfaffian func-
tion of the order r1 + r2 and degree (max(α1, α2), max(β1, β2)) (resp.
(max(α1, α2), β1 + β2)). If the two Pfaffian functions are defined by the
same Pfaffian chain of order r, then the order of the sum and product
is also r.
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2. A partial derivative of a Pfaffian function of order r and degree (α, β)
is a Pfaffian function of order r and degree (α, α+ β − 1).

In what follows we only consider the “restricted” case in which Pfaffian
functions are defined also on the boundary of the domain.

Let Ik = [0, 1]k denote the unit cube in Rk.

Definition 2.4. (Semi- and sub-Pfaffian set.)

1. A set S ⊂ Rs is called semi-Pfaffian in an open domain G ⊂ Rs if it
consists of points from G satisfying a Boolean combination of atomic
equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions
having a common Pfaffian chain defined in the domain G.

2. Consider Im+n ⊂ G, where G ⊂ R
m+n is an open domain, and the

projection map π : Rm+n → R
n. A subsetW ⊂ Rn is called (restricted)

sub-Pfaffian if W = π(S) for semi-Pfaffian set S ⊂ Im+n.

According to [6, 7], the complement In \W in In = π(In+m) of a sub-
Pfaffian set W is also sub-Pfaffian.

Definition 2.5. (Format.) For a semi-Pfaffian set

S =
⋃

1≤l≤M
{fl = 0, gl1 > 0, . . . , glJl > 0} ⊂ G ⊂ Rs, (1)

where fi, gij are Pfaffian functions with a common Pfaffian chain, of order
r and degree (α, β), defined in an open domain G, its format is a quintuple
(N, α, β, r, s), where N = 1+

∑
1≤l≤M (Jl+1). Let D = α+β. For s = m+n

and a sub-Pfaffian set W ⊂ Rn such that W = π(S), its format is the format
of S. In the sequel we will use the notation gl > 0 for the system of inequalities
gl1 > 0, . . . , glJl > 0.

Proposition 2.6. ( [13,14]) The number of connected components of a semi-
Pfaffian set S with the format (N, α, β, r, s), does not exceed

2r
2
sO(r)(ND)O(r+s). (2)

Corollary 2.7. The number of connected components of a sub-Pfaffian set
W = π(S), with format (N, α, β, r, s), defined by a formula having only exis-
tential quantifiers, does not exceed bound (2).

As a model of computation we use a real numbers machine (Blum-Shub-
Smale model) [2] equipped with an oracle for deciding the feasibility of any
system of Pfaffian equations and inequalities. An oracle is a subroutine which
can be used by the algorithm any time the latter needs to check feasibility.
We assume that this procedure always gives the correct answer though we do
not specify how it actually works. For some classes of Pfaffian functions the
feasibility problem is decidable on real numbers machines or Turing machines
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with explicit (singly-exponential) complexity bounds. Apart from polynomi-
als, such class form, for example, terms of the kind P (eh, X1, . . . , Xn) where
h is a fixed polynomial in X1, . . . , Xn and P is an arbitrary polynomial in
X0, X1, . . . , Xn (see [18]). For such classes the oracle can be replaced by a
deciding procedure, and we get an algorithm in the usual sense. As far as
the computational complexity is concerned, we assume that each oracle call
has the unit cost.

Definition 2.8. The closure cl(S) of a sub-Pfaffian set S in an open domain
G is an intersection with G of the usual topological closure of S:

cl(S) = {x ∈ G : ∀ε > 0 ∃z ∈ S (|x− z| < ε)}.

The frontier ∂S of S is cl(S) \ S.

Lemma 2.9. Let S be a semi-Pfaffian set in an open domain G ⊂ Rs, of
format (N, α, β, r, s), defined by (1) where s = n + m and the variables are
X = (X1, . . . , Xn), Y = (Y1, . . . , Ym). There is an algorithm which produces a
Boolean formula F (X, Y ) in a disjunctive normal form with atomic Pfaffian
functions such that for any fixed y ∈ Rm the closure cl(S ∩ {Y = y}) ⊂ Rn
coincides with {F (X, y)}. The format of {F (X, Y )} is

((Nd)O((s+r)s), α, dO(s), r, s),

where d = 2r
2
(sD)s+r and D = α+ β. The complexity of the algorithm does

not exceed (Nd)O((s+r)s).

Proof. The proof of this lemma is a straightforward parameterization of the
proof of Theorem 1.1 from [8].

If a set S is defined by a formula Ψ, then F (X, Y ) from the proof of
Lemma 2.9 will be sometimes denoted by cl(Ψ).

Definition 2.10. ( [5, 19]) Cylindrical cell is defined as follows.

1. Cylindrical 0-cell in Rn is an isolated point.

2. Cylindrical 1-cell in R is an open interval (a, b) ⊂ R.

3. For n ≥ 2 and 0 ≤ k < n, a cylindrical (k + 1)-cell in Rn is either
a section over C, i.e., a graph of a continuous bounded function f :
C → R where C is a cylindrical (k + 1)-cell in Rn−1 equipped with
coordinates X2, . . . , Xn, or else a sector over C, i.e., a set of the form

(f, g) ≡ {(x1, . . . , xn) ∈ Rn : (x2, . . . , xn) ∈ C and

f(x2, . . . , xn) < x1 < g(x2, . . . , xn)}
where C is a cylindrical k-cell in Rn−1 and f, g : C −→ R are contin-
uous bounded functions satisfying f(x2, . . . , xn) < g(x2, . . . , xn) for all
points (x2, . . . xn) ∈ C.
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Clearly, a cylindrical k-cell is homeomorphic to an open k-dimensional
ball, and its closure is homeomorphic to a closed k-dimensional ball.

Definition 2.11. Cylindrical cell decomposition, say D, of a subset A ⊂ Rn
is defined as follows.

1. If n = 1, then D is a finite family of pair-wise disjoint cylindrical cells
(i.e., isolated points and intervals) whose union is A.

2. If n ≥ 2, then D is a finite family of pair-wise disjoint cylindrical cells
in Rn whose union is A and there is a cell decomposition D′ of π(A)
such that for each cell C of D, the set π(C) is a cell of D′, where
π : Rn −→ R

n−1 is the projection map onto the coordinate subspace
of X2, . . . , Xn. We say that D′ is induced by D.

Definition 2.12. If A ⊂ Rn, B ⊂ Rn and D is a cylindrical cell decompo-
sition of A, then D is compatible with B if for all C ∈ D either C ⊂ B or
C ∩B = ∅ (i.e. some D′ ⊂ D is a cylindrical cell decomposition of B ∩A).

3 The main result

We describe an algorithm for producing a cylindrical cell decomposition of a
semi-Pfaffian set S in the closed unit cube In = [0, 1]n ⊂ Rn. By the defini-
tion, this decomposition induces a cylindrical decomposition of the projection
W of S onto a subspace Rm, m ≤ n.

More precisely, an input of the algorithm is a semi-Pfaffian set S defined
by (1) with s = n, and we assume that S is contained in In ⊂ G.

Let
π : Rn → R

m,

π : (X1, . . . , Xn) �→ (Xn−m+1, . . . , Xn)

be the projection map with π(S) = W .
The output of the algorithm is a cylindrical cell decomposition Dn of In

compatible with S. Each cell is described by a formula of the type

π′
( ⋃

1≤i≤M ′

⋂
1≤j≤M ′′

{hij ∗ij 0}
)
,

where hij are Pfaffian functions in n′ ≥ n variables, π′ is the projection
map π′ : R

n′ → R
n, ∗ij ∈ {= , >}, and M ′, M ′′ are certain integers. By

the definition of a cylindrical cell decomposition, Dn induces a cylindrical
decomposition Dm of the cube Im = π(In) ⊂ Rm compatible with W . Using
an oracle the algorithm can then decide which cells from Dm belong to W
and which to its complement Im \W .

We prove that the number of cells in Dn, the components of the format
and the complexity of the algorithm are less than

(α+ βN)r
O(n)2O(n2)

.
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Note that in [9] the bound for these parameters is

N (r+m+n)O(d)
(α+ β)r

O(d(m+dn))
,

where d = dim(W ) ≤ n. Note that if S is semialgebraic, then our bound
is essentially the same as the best known upper bound in a cylindrical cell
decomposition for the polynomial case [3,20]. Recall also result of Davenport
and Heintz [4], that real quantifier elimination is doubly exponential (and
hence any cylindrical algebraic decomposition algorithm should have the same
complexity).

4 Description of a cell decomposition

Let S ⊂ In ⊂ G ⊂ Rn be a semi-Pfaffian set, defined by (1) with s = n and
having format (N, α, β, r, n).

Firstly, we reduce the formula defining set S to a simple special form
which is essentially a single Pfaffian equation. Introduce a new variable X0

and the function

f ≡
∏

1≤i≤M

((
f2
i + (X0 − iN)2

)
·
∏

1≤j≤Ji

(
g2
ij + (X0 − iN − j)2

))
.

Notice that f is a Pfaffian function of order r and degree (α, 2βN).
Let D be a cylindrical decomposition of In × [0, N2] ⊂ Rn+1 compatible

with {f = 0} ∩ (In × [0, N2]), and D′ be the cylindrical decomposition of In

induced by D.
By the definition of the cylindrical decomposition, D′ is compatible with

π({f = 0}) where π : Rn+1 → R
n is the projection map onto the subspace

{X0 = 0}. Generally, π({f = 0}) �= S.

Lemma 4.1. The cylindrical decomposition D′ is compatible with S.

Proof. We need to prove that for any cell C′ of D′ either C′ ⊂ S or C′∩S = ∅.
Suppose that contrary to this, for a cell C′ of D′, there are points x, y ∈ C′

such that x ∈ {fi = 0, gi1 > 0, . . . , giJi > 0} for a certain i, and y �∈ S.
In particular, y �∈ {fi = 0, gi1 > 0, . . . , giJi > 0}, i.e., either gij(y) ≤ 0 for
some 1 ≤ j ≤ Ji or fi(y) �= 0. In the case gij(y) ≤ 0, since C′ is connected
and gij(x) > 0, there is a point z ∈ C′ ∩ {gij = 0} and therefore a point
(z, iN + j) ∈ {f = 0}. The point (z, iN + j) belongs to a cell, say C, of D.
Note that π(C) = C′. Clearly, C ⊂ {gij = 0} ∩ {X0 = iN + j}. It follows
that C′ ⊂ {gij = 0} which contradicts to x ∈ C′ and gij(x) > 0. In the case
of fi(y) �= 0, the point (y, iN) �∈ {f = 0}. The point (y, iN) belongs to a cell,
say C′′, of D, and π(C′′) = C′. But C′′ ∩ {f = 0} = ∅, since D is compatible
with {f = 0}, which is a contradiction, since x ∈ C′ and fi(x) = 0.

We proved that it is sufficient to construct a cylindrical decomposition
of the intersection {f = 0} ∩ (In × [0, N2]). For simplicity of notations, in
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what follows we assume that the function f has just n variables X1, . . . , Xn

and S = {f = 0} ∩ In. In the remaining part of this section we give a
non-constructive description of a certain cylindrical cell decomposition of In

compatible with {f = 0}.
Define:

• Ikm(a) ≡ Ik ∩ {Xm = a}, 1 ≤ m ≤ k, a ∈ [0, 1].

• Ikm ≡ Ikm(0) ∪ Ikm(1), 1 ≤ m ≤ k.

• Lk0(a) ≡ Ik and Lkm(a) ≡
⋂

1≤i≤m Iki (a), 1 ≤ m ≤ k, a ∈ [0, 1].

• Lkm ≡
⋂

1≤i≤m Iki , 1 ≤ m ≤ k.

Without loss of generality assume that {f = 0} ∩ In1 = ∅. Set V ≡ ({f =
0} ∩ In) ∪ In1 . Note that the format of V is (O(n2n), α, 2βN, r, n).

The description of a cell decomposition proceeds by induction on n.

Definition 4.2. For a subanalytic curve Γ (a subanalytic set of dimension
at most 1) in Rn, define:

1. Ek(Γ) to be the set of all points of local extrema of Xk-coordinate on
cl(Γ).

2. R(Γ) to be the set of all ramification points of cl(Γ). (A point x is
called a ramification point of cl(Γ), if for all sufficiently small 0 < t ∈ R
the intersection of cl(Γ) with a sphere of the radius t centered at x,
contains at least three different points.)

3. B(Γ) ≡ ∂Γ = cl(Γ) \ Γ.

4. The set of all special points relative to Xk-coordinate to be Sk(Γ) ≡
Ek(Γ) ∪R(Γ) ∪B(Γ).

Observe that an isolated point in Γ is a special point.
We make several initial steps of the induction.
Let n = 1. Then let Ω(0)

s = S1(V ) and define Ω
(0)
0 = Ω(0)

s . For all
pairs of points x, y ∈ Ω(0)

s consider the set V ∩ {1/2(x + y)} and denote
by Ω(0)

m the union of all these sets. Notice that if {f = 0} is finite, then
Ω(0)
m = Ω(0)

0 . Each member of Ω(0)
0 is a zero-dimensional cylindrical cell.

A cylindrical cell decomposition D of I1 compatible with V and therefore
with {f = 0} ∩ I1 consists of these points and open intervals on the line
between them. One can enumerate alternatively these points and intervals
by successive non-negative integers j1 in the ascending along X1 order by
assigning index j1 = 0 to 0, index j1 = 1 to its neighbouring interval, and so
on. Notice that |D| < 2|Ω(0)

0 |.
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Let n = 2. Then for every fixed value ω of X2-coordinate define finite
sets Ω(0)

0 (ω) and Ω(0)
m (ω) as in case n = 1 by restricting V to {X2 = ω}. Let

Γ(1)
0 ≡

⋃
ω∈L2

1(0)

Ω(0)
0 (ω), Γ(1)

m ≡
⋃

ω∈L2
1(0)

Ω(0)
m (ω).

Clearly, Γ(1)
0 , Γ(1)

m are 1-dimensional (not necessarily closed) subsets of I2.
Observe that L2

1 ⊂ Γ
(1)
0 ⊂ Γ(1)

m ⊂ V .
Let

Ω(1)
s = S2(Γ

(1)
0 ) ∪ S2(Γ(1)

m ).

For all x = (x1, x2) ∈ Ω(1)
s denote by Ω(1)

0 the union of finite sets of the kind
Γ(1)

0 ∩ {X2 = x2}. For all pairs of points x = (x1, x2), y = (y1, y2) ∈ Ω(1)
s

denote by Ω(1)
m the union of finite sets of the kind Γ(1)

m ∩{X2 = 1/2(x2+y2)}.
Let ω1 < ω2 be two neighbouringX2-coordinates of points from Ω

(1)
0 (that

is, there are no X2-coordinates ω of points from Ω(1)
0 such that ω1 < ω < ω2).

Then for each ω ∈ (ω1, ω2), the set Ω
(0)
0 (ω) ⊂ {X2 = ω} consists of the same

finite number of points. Let us enumerate these points and intervals between
them, as we did in case n = 1, by successive non-negative integers in the
ascending along X1 order. It is clear that the set of all points having the
same index for all ω ∈ (ω1, ω2) is an open interval of the curve Γ

(1)
0 , which

is a one-dimensional cylindrical cell being a graph of a continuous function
defined on an interval in the 1-dimensional set L2

1(0). The set of all intervals
having the same index for all ω ∈ (ω1, ω2) is an open 2-dimensional cylindrical
cell being the set of points strictly between the non-intersecting graphs of two
continuous functions defined on an interval in L2

1(0).
Now we can describe all zero-, one-, and two-dimensional cells of the

cylindrical decomposition of I2 that is compatible with V . Enumerate each
cell by a 2-multi-index (j1, j2) in a following way. Index j2 enumerates (by
successive non-negative integers starting from zero) alternatively points in
Ω(1)

0 ∩L2
1(0) and intervals between these points in L2

1(0) in the ascending along
X2 order. For a fixed value of j2, index j1 enumerates points in Ω

(0)
0 (ω) ⊂

{X2 = ω} and intervals between them (as in case n = 1), where ω is either
the X2-coordinate of the point in Ω

(1)
0 ∩ L2

1(0) having index j2, or the X2-
coordinate of a point in the interval between two neighbouring points of
Ω(1)

0 ∩ L2
1(0) having index j2.

It is easy to see that the defined family of the cylindrical cells is a
cylindrical cell decomposition of I2 compatible with V and therefore with
{f = 0} ∩ I2. A cell having index (i, j) is cylindrical over the cell with index
(0, j) that belongs in the decomposition of L2

1(0). Observe that the number
of cells in this decomposition is O(|Ω(1)

0 |).
We proceed to the description of a general induction step.
For every fixed value ω of Xn-coordinate finite sets of points of the kind

Ω(n−2)
0 (ω) and Ω(n−2)

m (ω) can be defined by applying the inductive hypothesis
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to V ∩{Xn = ω}. An important property of these sets, is that there are formu-
lae (with quantifiers) Φ(n−2)

0 (X1, . . . , Xn−1, Xn) and Φ
(n−2)
m (X1, . . . , Xn−1, Xn)

having free variables X1, . . . , Xn and not depending on ω, such that the re-
placement of the variable Xn by ω gives formulae Φ(n−2)

0 (X1, . . . , Xn−1, ω)
and Φ(n−2)

m (X1, . . . , Xn−1, ω) in free variables X1, . . . , Xn−1 defining the sets
Ω(n−2)

0 (ω) and Ω(n−2)
m (ω) respectively for the section {Xn = ω}. Let

Γ(n−1)
0 ≡ {Φ(n−2)

0 (X1, . . . , Xn−1, Xn)}, Γ(n−1)
m ≡ {Φ(n−2)

m (X1, . . . , Xn−1, Xn)}.

Clearly, Γ(n−1)
0 , Γ(n−1)

m are 1-dimensional (not necessarily closed) subsets of
In.

Observe that Lnn−1 ⊂ Γ(n−1)
0 ⊂ Γ(n−1)

m ⊂ V . Moreover, for any k =
2, . . . , n−1 by the definitions of Γ(n−1)

∗ , where ∗ ∈ {0, m}, we have the inclu-
sions πk(Γ

(n−1)
∗ ) ⊂ Γ(n−1)

∗ , where πk denotes the projection on the subspace
of coordinates Xk, Xk+1 . . . , Xn.

Let
Ω(n−1)
s = Sn(Γ

(n−1)
0 ) ∪ Sn(Γ(n−1)

m ).

For all points x = (x1, . . . , xn) ∈ Ω(n−1)
s denote by Ω(n−1)

0 the union of
finite sets of the kind Γ(n−1)

0 ∩ {Xn = xn}. For all pairs of points x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω(n−1)

s denote by Ω(n−1)
m the union of finite

sets of the kind Γ(n−1)
m ∩ {Xn = 1/2(xn + yn)}.

Let the index jn enumerate in the ascending along Xn order alternatively
points in Ω(n−1)

0 ∩ Lnn−1(0) and intervals between these points on Lnn−1(0).
Let ω1 < ω2 be two neighbouring Xn-coordinates of points from Ω(n−1)

0 .
Assume that the interval (ω1, ω2) is indexed by jn and a point ω ∈

(ω1, ω2). It follows from the inductive hypothesis that there is a certain
cylindrical cell decomposition of the intersection Inn (ω) = In ∩ {Xn = ω}
compatible with V ∩{Xn = ω} and all cells are enumerated by (n−1)-multi-
indices. In the next section we will prove that for all ω ∈ (ω1, ω2) the sets
of multi-indices coincide. Moreover, we will prove that any fixed multi-index
corresponds to cells of the same dimension and finally that the union of all
p-cells for p = 0, 1, . . . , n − 1 having the same multi-index (j1, . . . , jn−1) for
all ω ∈ (ω1, ω2) is a cylindrical (p+1)-cell to which we will assign multi-index
(j1, . . . , jn−1, jn).

Let ω be the Xn-coordinate of the point in Ω
(n−1)
0 ∩ Lnn−1(0) having in-

dex jn. By the inductive hypothesis there is a cylindrical cell decomposition
of Inn (ω). All cells of this decomposition are also the elements of a cell de-
composition of In. If a cell in Inn (ω) has a multi-index (j1, . . . , jn−1), then
considering it as a cell in In we assign to it the multi-index (j1, . . . , jn−1, jn).

We prove in the next section that the described decomposition D is com-
patible with V and therefore with {f = 0}∩In. Observe that its total number
of cells is O(|Ω(n−1)

0 |).



Cylindrical decompositions of sub-Pfaffian sets 683

5 Cell decomposition is well defined

Let ω1 < ω2 be two neighbouring Xn-coordinates of points from Ω(n−1)
s and

α1, α2 be any two numbers such that ω1 < α1 < α2 < ω2. According to the
inductive hypothesis (of the induction described in previous section), on both
Inn (α1) and Inn (α2) certain cylindrical cell decompositions compatible with V
are defined. Let (i1, . . . , in−1) be the multi-index of a cylindrical p-cell C1 in
Inn (α1).

Lemma 5.1. There exists a cylindrical p-cell C2 in Inn (α2) having the same
multi-index (i1, . . . , in−1).

Proof. According to the definition of ω1, ω2, the set Ω
(n−1)
s ∩ {ω1 < Xn <

ω2} = ∅. It follows that

Γ(n−1)
m ∩ {α1 ≤ Xn ≤ α2}

consists of a finite number of disjoint curve segments each of which is home-
omorphic to [0, 1], and on each of which Xn monotonously increases. There-
fore, the sets of points of the kind Ω(n−2)

∗ (α1) for Inn (α1) and Ω
(n−2)
∗ (α2)

for Inn (α2), where ∗ ∈ {0, m}, are in a natural bijective correspondence:
x ∈ Ω(n−2)

∗ (α1) corresponds to y ∈ Ω(n−2)
∗ (α2) if and only if x and y belong to

the same connected component of the intersection Γ(n−1)
∗ ∩{α1 ≤ Xn ≤ α2}.

Let x(1) = (x(1)
1 , . . . , x

(1)
n ), x(2) = (x(2)

1 , . . . , x
(2)
n ) ∈ Ω(n−2)

∗ (α1), and j,
1 ≤ j ≤ n− 1, be such that

(1) x
(1)
n = x

(2)
n = α1, x

(1)
n−1 = x

(2)
n−1, . . . , x

(1)
j+1 = x

(2)
j+1 and x

(1)
j < x

(2)
j ,

(2) in the interval (x(1)
j , x

(2)
j ) there is no j-coordinate of any point from

Ω(j−1)
∗ with respect to {Xn = x

(1)
n , . . . , Xj+1 = x

(1)
j+1}.

There exist certain y(1) = (y(1)
1 , . . . , y

(1)
n ), y(2) = (y(2)

1 , . . . , y
(2)
n ) ∈ Ω(n−2)

∗ (α2)
which are the images of x(1), x(2) respectively under the bijective correspon-
dence described above.

To prove the lemma, it is sufficient to show that y(1), y(2) satisfy the
conditions similar to (1), (2) for x(1), x(2). Namely:

(i) y
(1)
n = y

(2)
n = α2, y

(1)
n−1 = y

(2)
n−1, . . . , y

(1)
j+1 = y

(2)
j+1 and y

(1)
j < y

(2)
j ;

(ii) in the interval (y(1)
j , y

(2)
j ) there is no j-coordinate of any point from

Ω(j−1)
∗ with respect to {Xn = y

(1)
n , . . . , Xj+1 = y

(1)
j+1}.

Indeed, suppose that (i), (ii) are established. Index in−1, by definition,
enumerates either the Xn−1-projection of a point x ∈ Ω(n−2)

0 (α1) or an inter-
val between two neighbouring Xn−1-projections of some points x(1), x(2) ∈
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Ω(n−2)
0 (α1). In the first case, according to the properties (i), (ii), the image

point y ∈ Inn (α2) of x has the same last index in−1. In the second case, by
the same argument, the interval between points y(1), y(2) has number in−1.
Repeating this argument by induction for indices in−2, . . . , i1 we prove that
there exists a p-cell on Inn (α2) with multi-index (i1, . . . , in−1).

Now we proceed to the proof of conditions (i), (ii). Let Γx(1),y(1) (respec-
tively, Γx(2),y(2)) be the connected component of the intersection Γ(n−1)

∗ ∩
{α1 ≤ Xn ≤ α2} realizing the bijection between x(1), y(1) (respectively, be-
tween x(2), y(2)). Suppose that (i) is false because there exists k ∈ {j +
1, . . . , n − 1} such that y

(1)
k �= y

(2)
k . Let s ∈ {j + 1, . . . , n − 1} be the maxi-

mum among such numbers k and y
(1)
s < y

(2)
s . According to the construction

of the set Γ(n−1)
∗ , we have that πs(Γ

(n−1)
∗ ) ⊂ Γ(n−1)

∗ , where πs denotes the
projection onto the subspace {X1 = · · · = Xs−1 = 0} equipped with coordi-
nates Xs, Xs+1 . . . , Xn. In particular, πs(Ω

(n−2)
∗ (α)) ⊂ Ω(n−2)

∗ (α) ⊂ Inn (α),
where α = α1 or α2.

Define the points y(3) = πs(y(1)), y(4) = πs(y(2)) which belong to

Ω(n−2)
∗ (α2) ∩ {Xs+1 = y

(1)
s+1, . . . , Xn = y(1)

n }

and the point x(3) = πs(x(1)), which belongs to

Ω(n−2)
∗ (α1) ∩ {Xs+1 = x

(1)
s+1, . . . , Xn = x(1)

n }.

Thus, y
(3)
i = y

(4)
i = x

(3)
i = 0 for every 1 ≤ i < s, y

(3)
s = y

(1)
s , y

(4)
s = y

(2)
s (so,

y
(3)
s < y

(4)
s ) and x

(3)
s = x

(1)
s = x

(2)
s , since by assumption πs(x(1)) = πs(x(2)).

Define curves Γ′ = πs(Γx(1),y(1)) and Γ′′ = πs(Γx(2),y(2)) which both are
connected and contained in Γ(n−1)

∗ . We have: y(3) �= y(4), y(3) ∈ Γ′, y(4) ∈ Γ′′,
and x(3) ∈ Γ′ ∩ Γ′′. It follows that x(3) ∈ Sn(Γ

(n−1)
∗ ), which contradicts to

the choice of α1, α2.
We have proved that for all k ∈ {j + 1, . . . , n} the equality y

(1)
k = y

(2)
k

is true. The inequality y
(1)
j < y

(2)
j (see (i)) can be proved by a symmetric

argument. The property (ii) can be proved similarly.

Let C1, C2 be p-cells in Inn (α1) and Inn (α2) respectively, having the same
multi-index (i1, . . . , in−1). By inductive hypothesis for any j = 1, 2, either
Cj ⊂ V or Cj ∩ V = ∅.

Lemma 5.2. C1 ⊂ V if and only if C2 ⊂ V .

Proof. One can show by induction that there exists a point x ∈ C1 ∩ Γ(n−1)
m .

Since Ω(n−1)
s ∩ {ω1 < Xn < ω2} = ∅, there exists y ∈ C2 ∩ V such that

y ∈ Γ(n−1)
m . Thus, C2 ⊂ V .

For any α such that ω1 < α < ω2 denote by Cα the cylindrical p-
dimensional cell in Inn (α) having a multi-index (i1, . . . , in−1).
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Lemma 5.3. The union C =
⋃
α∈(ω1,ω2) Cα is a cylindrical (p+1)-dimensional

cell in In.

Proof. We prove by induction on n and p that C satisfies Definition 2.10.
The base case of n = 1 is trivial. According to the construction and the
inductive hypothesis, for each α there exists a cell C′α in Inn (α) ∩ {X1 = 0}
having the multi-index (0, i2, . . . , in−1). In particular, π2(Cα) = C′α. By the
inductive hypothesis, the union C′ =

⋃
α∈(ω1,ω2) C′α is a cylindrical cell in

In1 (0). Also, by the inductive hypothesis, Cα is either a graph of a continuous
bounded function hα : C′α → I1, or a sector between two such functions (see
Definition 2.10). Let, for definiteness, Cα be the graph of some hα. Then
C is the graph of the continuous bounded function h : C′ → I1 such that
h(x2, . . . , xn−1, xn) = hxn(x2, . . . , xn−1).

Lemma 5.3 implies that either C ⊂ V or C ∩ V = ∅, i.e., D is compatible
with V .

Lemma 5.4. The decomposition D is a cylindrical cell decomposition.

Proof. Straightforward.

Remark 5.5. Let in the induction step n of the description of D, the defini-
tion of the set Ω(n−1)

s be modified by adding an arbitrary point x ∈ cl(Γ(n−1)
m ).

Thus,
Ω(n−1)
s ≡ Sn(Γ

(n−1)
0 ) ∪ Sn(Γ(n−1)

m ) ∪ {x}.
Clearly, this leads to another cylindrical cell decomposition of In compatible
with V which is a refinement of D.

6 Constructing a cell decomposition: stage I

The algorithm recursively constructs the decomposition D described in pre-
vious sections. The idea is to find the finite set Ω(n−1)

0 and thereby the cell
decomposition D(n−1) induced by D on I1 ⊂ {X1 = · · · = Xn−1 = 0}. For
each cell C of D(n−1) the algorithm finds the finite set Ω(n−2)

0 parameterized
by the points of C, and thereby the cell decomposition D(n−2) induced on
I2 ⊂ {X1 = · · · = Xn−2 = 0}. On the last step of this recursion the param-
eterized set Ω(0)

0 and the cell decomposition D = D(0) of In will be found,
that is compatible with V .

A straightforward representation of a finite (generally parametric) set
Ω(i)

0 , by means of formula Φ
(i)
0 (see Section 4) would require quantifier alter-

nation which we clearly want to avoid. In the following algorithm, at step i
of the induction, for fixed values of coordinates Xi+1, . . . , Xn, we represent
Ω(i−1)

0 in the following three stages. Firstly, we approximate Ω(i−1)
s by a finite

(parametric) set of points defined by an existential formula. Then we define
Ω(i−1)
s by passing to limit with a help of Lemma 2.9. Finally, we define the
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set Ω(i−1)
0 itself by an existential formula which involves the formula for the

set Ω(i−1)
s .

Define recursively the sequence of integers s1, . . . , sn by setting s1 = 2 and
si+1 = 5si +2i+2 for 1 ≤ i ≤ n− 1. Introduce new variables Y1, . . . , Ysn , Z.

Let Di ≡ (Xi ≥ 0) ∧ (Xi ≤ 1), so that {
∧

1≤i≤k Di} = Ik. Denote
T (m) = (T1, . . . , Tm), the m-tuple of variables Ti, i ≤ m.

Let X = X(n). We now introduce formulaeG
(i)
0 , G

(i)
m , G(i) by induction on

i. In cases i = 1, 2 we include comments explaining some non-trivial parts of
the construction. Note that at a step i we treat Xi+1, . . . , Xn as parameters
of formulae.

Step i = 1.

f (0)(X) ≡ (f(X))2
In case when f �≡ 0 the equation f (0)(X) = 0 defines the set Ω(0)

0 \ {0, 1} and
possibly some points outside [0, 1].

h
(0)
Z (X, Z) ≡ (f (0)(X)− Z)2

The points satisfying f (0)(X) = 0 are perturbed by Z.

H
(0)
Z ≡

(
h

(0)
Z = 0

)
Θ(0)

0 ≡ (cl
(
H

(0)
Z ∧ (Z > 0)

)
∧ (Z = 0)) ∨ (X1 · (X1 − 1) = 0)

This formula defines the limits of perturbed points as Z → +0 with added
{0, 1}, i.e, the set Ω(0)

0 and possibly some points outside [0, 1]. The only
purpose of perturbation is to start the pattern which is meaningful on further
induction steps.

Θ(0)
m ≡

(
X1 = 1/2(Y1 + Y2) ∧ Θ(0)

0 (Y1, X2, . . . , Xn) ∧ Θ(0)
0 (Y2, X2, . . . , Xn) ∧

(f (0)(X) = 0)
)

Defining the set Ω(0)
m and possibly some points outside [0, 1].

G
(1)
0 (Y (2), X) ≡ Θ(0)

0 ∧ (Y1 = Y2 = 0) ∧D1

Defining the set Ω(0)
0 and the (parametric) curve Γ(1)

0 as projections along
variables Y1, Y2.

G
(1)
m (Y (2), X) ≡ Θ(0)

m ∧D1

Defining the set Ω(0)
m and the (parametric) curve Γ(1)

m as projections along
variables Y1, Y2.

G(1)(Y (2), X) ≡ G
(1)
0 (Y (2), X) ∨G

(1)
m (Y (2), X)

Defining Γ(1)
0 ∪ Γ

(1)
m .

Step i = 2.

G
(1)
∗ (Y (2), X) ≡

∨
1≤l≤M1

(
(f (1)
l∗ (Y

(2), X) = 0) ∧ (g(1)
l∗ (Y

(2), X) > 0)
)
for

∗ ∈ {0, m}.
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Representing each G
(1)
∗ (Y (2), X) as a Boolean combination of atomic equa-

tions and inequalities.

For each l, 1 ≤ l ≤M0, define :

h
(1)
l,Z,∗(Y

(4), X, Z) ≡ (f (1)
l∗ (Y

(2), X)−Z)2+
(
∂f

(1)
l∗

∂X1

)2

+
(
∂f

(1)
l∗

∂Y1

)2

+
(
∂f

(1)
l∗

∂Y2

)2

+

Y 2
3 + Y 2

4

For small values of Z the equation f
(1)
l∗ (X) = Z defines a smooth hyper-

surface. Then h
(1)
l,Z,∗(Y

(4), X, Z) = 0 defines the set of all critical points of
the coordinate function X2 on this hypersurface. The purpose of introducing
variables Y3, Y4 will be explained below.

H
(1)
Z∗ ≡

∨
1≤l≤M1

(
(h(1)
l,Z,∗ = 0) ∧ (g

(1)
l∗ > 0)

)
Collecting together the critical points on f

(1)
l∗ (X) = Z for all l, 1 ≤ l ≤ M1

and selecting the ones which are relevant. Note that for small values of Z > 0
all points of local extrema of the coordinate function X2 on {G(1)

∗ (Y (2), X)},
except possibly the ones with X2(X2 − 1) = 0, are close to corresponding
critical points.

Θ(1)
e∗ (Y (4), X) ≡ (cl

(
H

(1)
Z∗ ∧ (Z > 0)

)
∧ (Z = 0)) ∨ (G(1)

∗ ∧ (X2(X2 − 1) = 0))
Passing to limit as Z → +0 and adding G

(1)
∗ ∧ (X2(X2 − 1) = 0) produces a

finite (parameterized) set of points on {G(1)
∗ } which includes all points of local

extrema of X2 on {G(1)
∗ }. The projection of {Θ(1)

e∗ (Y (4), X)} along variables
Y1, Y2, Y3, Y4 contains all points of local extrema of X2 on Γ

(1)
∗ .

Θ(1)
∂∗ (Y

(4), X) ≡ ∂(G(1)
∗ (Y (2), X)) ∧ (Y3 = Y4 = 0)

Defining a finite set of frontier points of {G(1)
∗ (Y (2), X)}. The projection of

{Θ(1)
∂∗ (Y

(4), X)} along variables Y1, Y2, Y3, Y4 contains B({Γ(1)
∗ }).

G
(1)
1∗ ≡ G

(1)
∗ (Y (2), X1 − Z, X2, . . . , Xn)

This defines a curve obtained from {G(1)
∗ } by shifting it along the coordinate

axis X1 by Z.

Q
(1)
Z∗(Y

(4), X1 − Z, X) ≡ G
(1)
1∗ (Y

(2), X1 − Z, X2, . . . , Xn) ∧G
(1)
∗ (Y3, Y4, X)

Intersecting the projection of {G(1)
∗ } with the projection of its shift produces

a finite (parameterized) subset of Γ(1)
∗ . Note that we need two additional

variables Y3, Y4. Observe that for a small value |Z| each ramification point
of {Γ(1)

∗ } is close to the projection along Y1, Y2, Y3, Y4 of some of the points
from {Q(1)

Z∗}.

Θ(1)
r∗ (Y (4), X1 − Z, X) ≡ cl

(
Q

(1)
Z∗ ∧ (Z > 0)

)
∧ (Z = 0)

Passing to limit as Z → +0 produces a finite (parameterized) set of points
on {G(1)

∗ } such that its projection along variables Y1, Y2, Y3, Y4, X1 contains
all X2-coordinates of ramification points of Γ

(1)
∗ .

Θ(1)
s (Y (4), X) ≡ Θ(1)

e0 ∨Θ
(1)
∂0 ∨Θ

(1)
r0 ∨Θ

(1)
em ∨Θ(1)

∂m ∨Θ
(1)
rm
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Defining a set whose projection along variables Y1, . . . , Y4, X1 is a finite set
containing all X2-coordinates of points from S2(Γ

(1)
0 ) ∪ S2(Γ

(1)
m ).

Θ(1)
0 (Y (7), X) ≡ G

(1)
0 (Y (2), X) ∧Θ(1)

s (Y3, Y4, . . . , Y7, X2, . . . , Xn)
Defining a set whose projection along variables Y1, . . . , Y7 contains Ω

(1)
0 . Note

that in the expression Θ(1)
s (Y3, Y4, . . . , Y7, X2, . . . , Xn) variables Y3, . . . , Y6

stand for Y (4) in the definition of Θ(1)
s while Y7 stands for X1. For any

fixed values of parameters X3, . . . , Xn the set Θ
(1)
s is finite and therefore

the set {G(1)
0 ∧Θ

(1)
s } reduces to an intersection of two finite unions of affine

subspaces of complementary dimensions in 8-dimensional space. It follows
that Θ(1)

0 (Y (7), X) is finite.

Θ(1)
m (Y (14), X) ≡

(
X2 = 1/2(Y8 + Y14)∧

G(1)(Y (2), X) ∧Θ(1)
s (Y3, Y4, . . . , Y8, X3, . . . , Xn)∧

∧Θ(1)
s (Y9, . . . , Y14, X3, . . . , Xn)

)
Defining a finite set of points whose projection along variables Y1, . . . , Y14

contains Ω(1)
m .

G
(2)
0 (Y (14), X) ≡ Θ(1)

0 (Y (7), X) ∧ (Y8 = · · · = Y14 = 0) ∧D2

G
(2)
m (Y (14), X) ≡ Θ(1)

m (Y (14), X) ∧D2

G(2)(Y (14), X) ≡ G
(2)
0 (Y (14), X) ∨G

(2)
m (Y (14), X)

General step. Assume that on step i, i ≤ n− 1, the expression
G(i)(Y (si), X) ≡ G

(i)
0 ∨G

(i)
m

was defined. The interpretations of the following formulae are analogous to
the ones provided in step 2.

Step (i+ 1).

G
(i)
∗ (Y (si), X) ≡

∨
1≤l≤Mi

((
f

(i)
l∗ (Y

(si), X) = 0
)
∧
(
g

(i)
l∗ (Y

(si), X) > 0
))
, where

∗ ∈ {0, m}.

For each l, 1 ≤ l ≤Mi, define :

h
(i)
l,Z,∗(Y

(2si), X, Z) ≡
(
f

(i)
l∗ −Z

)2 +∑1≤j≤i+1

(
∂f

(i)
l∗

∂Xj

)2

+
∑

1≤j≤si

(
∂f

(i)
l∗

∂Yj

)2

+
∑

si+1≤j≤2si

(
Yj

)2

H
(i)
Z∗ ≡

∨
1≤l≤Mi

(
(h(i)
l,Z,∗ = 0) ∧ (g

(i)
l∗ > 0)

)

Θ(i)
e∗ ≡ cl

(
H

(i)
Z∗ ∧ (Z > 0)

)
∧ (Z = 0) ∨ (G(i)

∗ ∧ (Xi+1(Xi+1 − 1)) = 0)

Θ(i)
∂∗ ≡ ∂(G(i)

∗ (Y (si), X)) ∧ (Ysi+1 = · · · = Y2si = 0)
G

(i)
1∗ ≡ G

(i)
∗ (Y1+si , . . . , Y2si , X1, . . . , Xi−1, Xi − Z, Xi+1, . . . , Xn)

G
(i)
2∗ ≡ G

(i)
∗ (Y1+si , . . . , Y2si , X1, . . . , Xi−2, Xi−1 − Z, Xi, . . . , Xn)
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· · · · · ·
G

(i)
j∗ ≡ G

(i)
∗ (Y1+si , . . . , Y2si , X1, . . . , Xi−j , Xi+1−j − Z, Xi+2−j , . . . , Xn)

· · · · · ·
G

(i)
i∗ ≡ G

(i)
∗ (Y1+si , . . . , Y2si , X1 − Z, X2, . . . , Xn)

Q
(i)
1,Z,∗(Y

(2si), Xi − Z, X) ≡ G
(i)
1∗ ∧G

(i)
∗

Q
(i)
2,Z,∗(Y

(2si), Xi−1 − Z, X) ≡ G
(i)
2∗ ∧G

(i)
∗

· · · · · ·
Q

(i)
j,Z,∗(Y

(2si), Xi+1−j − Z, X) ≡ G
(i)
j∗ ∧G

(i)
∗

· · · · · ·
Q

(i)
i,Z,∗(Y

(2si), X1 − Z, X) ≡ G
(i)
i∗ ∧G

(i)
∗

Q
(i)
Z∗(Y

(2si), X1 − Z, . . . , Xi − Z, X) ≡
∨

1≤j≤i
(
Q

(i)
j,Z,∗

)

Θ(i)
r∗ ≡ cl

(
Q

(i)
Z∗ ∧ (Z > 0)

)
∧ (Z = 0)

Θ(i)
s (Y (2si), X) ≡ Θ(i)

e0 ∨Θ
(i)
∂0 ∨Θ

(i)
r0 ∨Θ

(i)
em ∨Θ(i)

∂m ∨Θ
(i)
rm

Θ(i)
0 (Y

(3si+i), X) ≡ G
(i)
0 (Y (si), X)∧

∧Θ(i)
s (Ysi+1, . . . , Y3si , Y3si+1, . . . , Y3si+i, Xi+1, . . . , Xn)

Θ(i)
m (Y (si+1), X) ≡ (Xi+1 = 1/2(Y3si+i+1 + Y5si+2i+2) ∧G(i)(Y (si), X)∧
∧Θ(i)

s (Ysi+1, . . . , Y3si+i+1, Xi+2, . . . , Xn)∧
∧Θ(i)

s (Y3si+i+2, . . . , Y5si+2i+2, Xi+2, . . . , Xn)

G
(i+1)
0 (Y (si+1), X) ≡ Θ(i)

0 (Y (3si+i), X)∧ (Y3si+i+1 = · · · = Ysi+1 = 0)∧Di+1

G
(i+1)
m (Y (si+1), X) ≡ Θ(i)

m (Y (si+1), X) ∧Di+1

G(i+1)
(
Y (si+1), X

)
≡ G

(i+1)
0 ∨G

(i+1)
m

End of the general step.

For each i, 1 ≤ i ≤ n let ρi : R
si+i → R

i be the projection map
along Y (si) onto the subspace with coordinatesX1, . . . , Xi. Consider a vector
(ωi+2, . . . , ωn) such that 0 ≤ ωj ≤ 1 for all j = i+2, . . . , n. For any ∗ ∈ {0, m}
let Ω(i)

∗ (ωi+2, . . . , ωn) denote the set Ω
(i)
∗ for V ∩{Xi+2 = ωi+2, . . . , Xn = ωn}

in the cube In−i+1 identified with In ∩ {Xi+2 = ωi+2, . . . , Xn = ωn}.

Lemma 6.1. For any ∗ ∈ {0, m} the projection ρi+1({Θ(i)
∗ (Y (3si+i), X)} ∩

{Xi+2 = ωi+2, . . . , Xn = ωn}) is a finite set of points containing
Ω(i)
∗ (ωi+2, . . . , ωn).

Proof. The proof is a straightforward routine using induction on i. For i = 2
it is actually contained in the comments to formulae defining Θ(1)

0 , Θ(1)
m (see

step i = 2).
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Lemma 6.2. For each k ∈ {1, . . . , n} the format of the sets defined by G
(k)
∗

(for ∗ ∈ {0, m}) is (Nk, α, βk, rk, mk), where

Nk = (α+ βN)(r+n)O(k)2O(k2)
, βk = (α+ βN)(r+n)O(k)2O(k2)

,

rk = r5k−1, mk = O(n5k).

Proof. Recall that the semi-Pfaffian set V = ({f = 0} ∩ In) ∪ In1 has format
(O(n2n), α, 2βN, r, n). Introduce notations NV = O(n2n) and DV = O(α +
βN).

At step k, 1 ≤ k ≤ n, let mk = sk + n be the total number of variables
and rk the size of the Pfaffian chain for the functions in G

(k)
∗ . Recall that

s1 = 2 and sk = 5sk−1 + 2k. Then sk = O(k5k) and mk = O(n5k).
For k = 1 the order r1 = r since the operation of taking closure (see

Lemma 2.9) leaves the size of a Pfaffian chain unchanged. Suppose that
F (Y (sk−1), X) =

(
f1(Y (sk−1), X), . . . , frk−1(Y

(sk−1), X)
)
is the Pfaffian chain

of the set defined by G
(k−1)
∗ . Notice that the order of the Pfaffian chain of the

set defined by Q
(k−1)
j,Z,∗ , 1 ≤ j ≤ k−1 is 2rk−1 since we need to add in this chain

the same functions as before but with variables Y (sk−1), Xk+1−j replaced by
Ysk−1+1, . . . , Y2sk−1 , Xk+1−j − Z respectively. Thus, the size of the Pfaffian
chain ofQ(k−1)

Z∗ is equal to krk−1. According to Lemma 2.9, there is a Boolean
formula, sayQ

(k−1)
∗ , with atomic Pfaffian functions in variables Y (2sk−1), X1−

Z, . . . , Xk−1−Z, X, Z, having the same common Pfaffian chain asQ
(k−1)
Z∗ such

that {Q(k−1)
∗ } = cl

{
Q

(k−1)
Z∗ ∧ (Z > 0)

}
. The formula Θ(k−1)

r∗ ≡ Q
(k−1)
∗ ∧ (Z =

0) is equivalent to an expression involving Pfaffian functions only in variables
Y (2sk−1), X . Substituting the value 0 for the variable Z in every function
present in the Pfaffian chain ofQ(k−1)

∗ we see that the Pfaffian chain of Θ(k−1)
r∗

is F (Y (sk−1), X), F (Ysk−1+1, . . . , Y2sk−1 , X). Similarly, formulae Θ(k−1)
e∗ and

Θ(k−1)
∂∗ are equivalent to expressions involving Pfaffian functions only in vari-

ables Y (2sk−1), X , having common Pfaffian chain F (Y (sk−1), X). Thus, the
Pfaffian chain of Θ(k−1)

s is again F (Y (sk−1), X), F (Ysk−1+1, . . . , Y2sk−1 , X). It
follows that the Pfaffian chain of Θ(k−1)

0 is

F (Y (sk−1), X), F (Ysk−1+1, . . . , Y2sk−1 , Y3sk−1+1, . . . , Y3sk−1+k−1, Xk, . . . , Xn),

F (Y2sk−1+1, . . . , Y3sk−1 , Y3sk−1+1, . . . , Y3sk−1+k−1, Xk, . . . , Xn)

and the common Pfaffian chain of Θ(k−1)
m and G

(k)
∗ is

F (Y (sk−1), X), F (Ysk−1+1, . . . , Y2sk−1 , Y3sk−1+1, . . . , Y3sk−1+k, Xk+1, . . . , Xn),

F (Y2sk−1+1, . . . , Y3sk−1 , Y3sk−1+1, . . . , Y3sk−1+k, Xk+1, . . . , Xn),

F (Y3sk−1+k+1, . . . , Y4sk−1+k, Y5sk−1+k+1, . . . , Y5sk−1+2k, Xk+1, . . . , Xn),
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F (Y4sk−1+k+1, . . . , Y5sk−1+k, Y5sk−1+k+1, . . . , Y5sk−1+2k, Xk+1, . . . , Xn).

We conclude that the order of the set defined by G
(k)
∗ is rk = 5rk−1 = r5k−1.

Let

pk =
∏

1≤j≤k−1

mj = nk−12O(k2), qk =
∏

1≤j≤k−1

(mj + rj) = (r+n)k−12O(k2).

For k = 1, applying the bounds from Lemma 2.9 we get

N1 = (2r
2
NV )O(m1(m1+r1))(m1DV )O(m1(m1+r1)2)

and
β1 = 2m1r

2
1 (m1DV )O(m1(m1+r1))

Note that at each other step we perform two iterations of the closure opera-
tion. It can be seen that

βk = (2rpkDV )O(p2
kq

2
k) = D

(r+n)O(k)2O(k2)

V

and
Nk = (2r

2
pkNV β2k

k )
O(p2

kq
3
K) = D

(r+n)O(k)2O(k2)

V .

The algorithm writes out formulae G
(k)
∗ , G(k) for all 1 ≤ k ≤ n using the

described recursive formulae. The complexity of this stage of the algorithm
does not exceed (α+ βN)r

O(n)2O(n2)
.

7 Constructing a cell decomposition: stage II

The second stage of the algorithm consists of the following recursive proce-
dure. For 0 ≤ i ≤ n− 1 and for fixed values of coordinates Xi+2, . . . , Xn let
Ω(i)
L = Ω(i)

0 ∩ Lni (0) ⊂ Ω(i)
0 . This is the projection of Ω

(i)
0 on {X1 = · · · =

Xi = 0}. According to Lemma 6.1, Ω(i)
L ⊂ ρi+1({G(i+1)

0 (Y (si), X) ∧ (X1 =
· · · = Xi = 0)}). Introduce the notation

Ψ(i)
L (X) ≡ (∃Y (si))

(
G

(i)
0 (Y (si), X

)
∧ (X1 = · · · = Xi = 0)

)
.

Thus, Ω(i)
L ⊂ {Ψ

(i)
L (X)}.

For each i ∈ {0, . . . , n} we define as follows a cylindrical cell decomposition
D(i) of Lni (0) which is compatible with the projection of V onto the subset
Lni (0) of R

n−i equipped with coordinates Xi+1, . . . , Xn.
For each k ∈ {0, . . . , n} let i = n− k. We proceed by induction on k.
For k = 0 set α = (0, . . . , 0) and C

(n)
α = {(0, . . . , 0)} to be the only cell of

the cylindrical cell decomposition D(n) of Lnn(0).
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Suppose that on the step k a cylindrical cell decomposition D(i) of the
cube Lni (0) was defined. On the next step k + 1 (with i = n − k − 1)
the input is the cylindrical cell decomposition D(i+1) of the cube Lni+1(0)
obtained on the previous step. For each cell C

(i+1)
α ∈ D(i+1) denote by

Z(C(i+1)
α ) the set C

(i+1)
α × [0, 1], which is the bounded cylinder over C

(i+1)
α

and along Xi+1, contained in the cube Lni (0). The algorithm constructs a
cell decomposition of Z(C(i+1)

α ) in the following way. Observe that for any
point z = (zi+2, . . . , zn) ∈ C

(i+1)
α , the cardinality of {Ψ(i)

L (X1, . . . , Xi+1, z)}
is finite and constant over C

(i+1)
α . Corollary 2.7 implies that this number

does not exceed
Mi = (α+ βN)(r+n)O(i)2O(i2)

.

Introduce new variables x
(i)
j,i+1, 1 ≤ j ≤Mi, and denote x

(i)
j = (0, . . . , 0, x(i)

j,i+1, z).
The algorithm finds the exact number Kα of distinct points in

{Ψ(i)
L (X1, . . . , Xi+1, z)}

by testing with the oracle for each m, 1 ≤ m ≤Mi, whether the statement

(∃z)(∃x(i)
1,i+1) · · · (∃x

(i)
m,i+1)

[( ∧
1≤j≤m

Ψ(i)
L (x

(i)
j )
)
∧

( ∧
1≤r≤m−1

∧
1≤j≤r

(x(i)
r+1,i+1 �= x

(i)
j,i+1)

)]

is true. The number Kα is the maximal m for which the statement holds.
We now describe all cells in Z(C(i+1)

α ) ⊂ Lni (0) by the following formulae.

• Sections over C
(i+1)
α : for 1 ≤ j ≤ Kα

C
(i)
α′ =

{
(0, . . . , 0, zi+1, . . . , zn) ∈ Z(C(i+1)

α ) :

(∃x(i)
1 ) · · · (∃x(i)

Kα
)
( ∧

1≤j≤Kα

Ψ(i)
L (x

(i)
j )∧

∧x
(i)
1,i+1 < · · · < x

(i)
j−1,i+1 < x

(i)
j,i+1 = zi+1 < x

(i)
j+1,i+1 < · · · < x

(i)
Kα,i+1

)}
,

where the index α′ = (0, . . . , 0, 2j − 2, αi+2, . . . , αn).

• Sectors over C
(i+1)
α : for 1 ≤ j ≤ Kα − 1

C
(i)
α′ =

{
(0, . . . , 0, zi+1, . . . , zn) ∈ Z(C(i+1)

α ) :

(∃x(i)
1 ) · · · (∃x(i)

Kα
)
( ∧

1≤j≤Kα

Ψ(i)
L (x

(i)
j )∧
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∧x
(i)
1,i+1 < · · · < x

(i)
j−1,i+1 < x

(i)
j,i+1 < zi+1 < x

(i)
j+1,i+1 < · · · < x

(i)
Kα,i+1

)}
,

where the index α′ = (0, . . . , 0, 2j − 1, αi+2, . . . , αn).

Combining the cell decompositions of Z(C(i+1)
α ) for all cells C

(i+1)
α in

D(i+1), we obtain a cylindrical cell decomposition D(i) of the cube Lni (0).
This concludes the description of the algorithm.

We conclude by estimating the complexity of the algorithm. On each
recursion step k = 0, . . . , n of the second stage of the algorithm, the degrees
of Pfaffian functions remain the same as in G

(n−k)
0 , while the numbers of

variables, orders and atomic formulae are multiplied by at most Mn−k + 1
each. The number of cells is increased on a recursion step according to the
formula |D(n−k)| ≤ O(Mn−k)|D(n−k+1)| and |D(n)| = 1, so |D(0)| ≤ O(Mn)n.

It follows that the described two-stage algorithm produces a cylindrical
cell decomposition D(0) of In, compatible with the semi-Pfaffian set S ∩ In,
consisting of Λ = (α + βN)r

O(n)2O(n2)
cells. Each cell is a sub-Pfaffian set

having a format (Λ, α,Λ,Λ,Λ). The complexity of the algorithm does not
exceed Λ.
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