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Abstract. Most of the standard proofs of the Bell theorem are based on the Kolmogorov axioms of probability theory. We
show that these proofs contain mathematical steps that cannot be reconciled with the Kolmogorov axioms. Specifically we
demonstrate that these proofs ignore the conclusion of a theorem of Vorob’ev on the consistency of joint distributions. As a
consequence Bell’s theorem stated in its full generality remains unproven, in particular, for extended parameter spaces that are
still objective local and that include instrument parameters that are correlated by both time and instrument settings. Although
the Bell theorem correctly rules out certain small classes of hidden variables, for these extended parameter spaces the standard
proofs come to a halt. The Greenberger-Horne-Zeilinger (GHZ) approach is based on similar fallacious arguments. For this
case we are able to present an objective local computer experiment that simulates the experimental test of GHZ performed by
Pan, Bouwmeester, Daniell, Weinfurter and Zeilinger and that directly contradicts their claim that Einstein-local elements of
reality can neither explain the results of quantum mechanical theory nor their experimental results.

INTRODUCTION

Consider three joint pair probability distributions defined on the Euclidean plane such that any two of these three
joint pair distributions share a common marginal. Let these three pair distributions be generated by the following pairs
of random variables(A,B), (A,C) and(B,C). Then, according to a theorem of Vorob’ev [1] it may not be possible
to realize these three probability distributions on a common probability space in the following sense. It may not be
possible to find on any probability space three random variablesA,B,C (and a corresponding distribution formed for
that triple) with the property that the three joint pair distributions that can be formed from that triple will coincide
with the initially given joint pair distributions for(A,B), (A,C) and(B,C). Here is a modification of the example that
Vorob’ev used as the opening statement for his paper. As before we label the three joint distributions in terms of pairs
of random variables (A,B), (A,C), and (B,C). All random variables assume only the values +1 and -1. We define these
three joint probability distributions according to the following table:

TABLE 1. Modified example of Vorob’ev [1].

(+1,+1) (+1,−1) (−1,+1) (−1,−1)

(A, B) 1
4(1+ 1√

2
) 1

4(1− 1√
2
) 1

4(1− 1√
2
) 1

4(1+ 1√
2
)

(A, C) 1
4(1+ 1√

2
) 1

4(1− 1√
2
) 1

4(1− 1√
2
) 1

4(1+ 1√
2
)

(B, C) 1
4

1
4

1
4

1
4

Then it is easy to see that it is not possible to assign a non-negative probability to the event(A=−1,B=−1,C=−1)
consistent with Table 1. Indeed, this latter probability could not be more than1

4 because it cannot exceedP(B=−1,C=
−1) = 1

4; similarly P(A =−1,B =−1,C = +1)≤ P(A =−1,C = +1) = 1
4(1− 1√

2
). Adding these two probabilities

we obtainP(A = −1,B = −1) ≤ 1
4(2− 1√

2
) a bound smaller than the value assigned in Table 1. ThusA,B,C can

not be defined on a common probability spacesuch that the joint distribution of any of the three pairs that possibly
could be formed from them coincides with the pair distributions defined by Table 1. Note that any two of the three
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joint distributions share the same marginal, namely each of the three variablesA,B,C assumes the values+1 and
−1 with probability1/2. If, on the other hand, the twelve entries in Table 1 are all replaced by1/4, then three, even
independent, random variablesA,B,C can be defined on some common probability spaceand each assuming the values
+1 and−1 with probability1/2.

The following question arises immediately. If the twelve entries in Table 1 are replaced by non-negative numbers
such that the entries in each row add up to1, in other words if Table 1 constitutes a3x4 stochastic matrix, then under
which circumstances is it possible to realize the corresponding joint distributions on a common probability space?
Bell, unknowingly, addressed this question in the context of quantum mechanics by replacing the twelve entries by
numbers that depended on the covariances, resulting from such joint distributions, and that were based on the negative
cosines of certain pairs of angles. He then assumed that a joint distribution exists by definingA,B,C as functions
of a single random variableΛ as well as certain given settings as indicated in Table 1 with the goal of deducing
consequences of “some condition of locality, or of separability of distant systems" [2]. Indeed, Bell tried to show then
via his inequality that objective local hidden variables such asΛ can not exist [3] and states: ”In a theory in which
parameters are added to quantum mechanics to determine the results of individual measurements, without changing
the statistical predictions, there must be a mechanism whereby the setting of one measuring device can influence the
reading of another instrument, however remote". The basis for this far reaching statement was the fact that for certain
combinations of angles, depending on the instrument settings, a contradiction between the predictions of quantum
mechanics and his inequality could be obtained. However, as soon asA,B,C are assumed to depend only on the single
random variableΛ(ω),ω ∈Ω, thenA= A(Λ(ω)),B= B(Λ(ω)) andC=C(Λ(ω)) are all defined on the same common
probability spaceΩ. Thus in view of Vorob’ev’s example the contradiction is obtained even before we get started and
without recourse to any inequality. In the same vein, the derivation of the Bell-type inequalities requires no further
assumptions and is independent of any additional considerations involving the Einstein separation principle. In the
present scenario, the basis for Bell’s proof is simply the assumption thatA,B,C can simultaneously be measured in
the sense that the values that these three random variables assume can be simultaneously registered. Therefore the
definition ofA(Λ(ω)) etc. (denoted byA(a,λ ) etc. in the first equation of Bell’s celebrated paper [3]) contains all the
information needed to derive the inequalities that contradict some quantum results. However, according to Vorob’ev’s
example of Table 1 probabilities arising from certain “closed loops" can not consistently be described by random
variables on a common probability space. Hence the contradiction between the Bell inequality and the predictions of
quantum mechanics has its roots entirely in purely mathematical reasons. At this point it is of no concern whether or
not Λ depends on all or on none of the instrument settings.

To better illustrate the ramifications of this discussion we ask the reader to imagine the following situation. Assume
that the Aspect experiment [4] had already been performed and assume that Bell knew about it and also knew
Vorob’ev’s example of Table 1. Bell wishes now to investigate the possibility of a hidden variable model for the
Aspect experiment. He knows that in view of the Vorob’ev example the results of Aspect et al. [4] can not be explained
by a model that uses three random variables defined on a common probability space (see also the discussion after
Eq.(4)). Therefore he rejects the AnsatzA = A(Λ(ω)),B = B(Λ(ω)) andC = C(Λ(ω)). No inequalities are used or
needed.

However, history proceeded along a different path. The Bell inequality, as well as the more general CHSH [5]
inequality, were obtained first and provided the decisive motivation for the Aspect experiment [4].Λ’s independence
of the settings, a consequence of the delayed choice of the settings in the Aspect experiment and of Einstein locality,
was considered crucial. Bell’s Ansatz was considered to be most general and the contradiction of Bell-type inequalities
with the data of the Aspect experiment was attributed by Bell to non-localities.

We assume throughout as the basis for our analysis that the Aspect experiment and all its results are valid and that
no practical deviations from the ideal embodiment of all experimental procedures, such as detector inefficiencies etc.,
are of any significance. We believe that ultimately it ought to be the goal to find a physically reasonable mathematical
model that can explain the data of the Aspect experiment. We emphasize that our criticism is directed only at some of
the previous mathematical models for the Aspect experiment, such as the Bell inequality, the CHSH inequality and the
arguments leading to these inequalities.

In many sciences it is a commonly accepted principle that if there are competing theories that can be used to explain
certain phenomena then the simplest theory is the chosen one. We believe that a simpler and thus a better explanation
of the data of the Aspect experiment can be based on a model that in addition to a source parameterΛ includes time
and setting dependent instrument parametersΛ∗a(t) andΛ∗∗b (t). These parameters are Einstein-local and they may be
quantum mechanical in nature, in the sense of describing atomistic effects.Λ∗a(t) andΛ∗∗b (t) are permitted to have their
own distinctive stochastic behavior and the same is true for all other settings.

We also note that independent of our considerations we believe that the Aspect experiment is crucial for the
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interpretation of quantum mechanics and particularly for the following important distinction. It may either prove
the existence of time and setting dependent equipment parameters or, if their existence can be ruled out for not yet
known physical reasons, it may just show what the followers of Bell have deduced all along e.g. non-locality or the
lack of validity of counterfactual reasoning as proposed by Peres [6].

In contrast we shall show that other related experiments, particularly those performed by Pan et al. [7] according to
the Greenberger-Horne-Zeilinger (GHZ) theory [8], do permit the construction of an objective local model. We shall
point out a serious flaw in their theory and, in addition, we will discuss a simple experiment that can be performed
on three independent computers and that simulates the same experimental data as the test performed by Pan et al.
[7]. This computer simulation directly contradicts their claim that their experiment establishes non-locality without
invoking inequalities. We also note that the variations of Hardy, Peres and Mermin on the GHZ theory [9] suffer from
similar deficiencies.

CRITIQUE OF PROOFS OF THE CHSH INEQUALITY

Probabilistic proofs

This section is a brief summary of our previous work [10] with the role of the Vorob’ev theorem [1] woven in.
First we recall that the Bell inequality is contained in the CHSH inequality as a special case. Therefore we focus our
discussion on the CHSH inequality noting that the same arguments apply mutatis mutandis to the Bell inequality. From
now on we use the standard set-up and standard notation [10]. Correlated pairs of particles are emitted from a source
S0, and the information they carry is characterized by a random variableΛ. Following Bell, we introduce random
variables that describe spin measurementsA = ±1 in stationS1, andB = ±1 in stationS2. A andB are assumed to
be functions ofΛ and of the instrument settings that are denoted by three-dimensional unit vectors, usuallya and
d in S1, andb andc in S2. The instrument settings have a special status in the sense that they are controlled by the
experimenters inS1 andS2 respectively. The experimenter inS1 choosesa or d with probability 1

2 and the experimenter
in S2, stochastically independent of the choice inS1, choosesb or c with probability 1

2.
The standard proofs of the CHSH inequality, as presented in most text-books, proceed as follows. An entity

Γ := A(a,Λ(.)).B(b,Λ(.))+A(a,Λ(.)).B(c,Λ(.))+A(d,Λ(.)).B(b,Λ(.))−A(d,Λ(.)).B(c,Λ(.)) (1)

is defined. SinceA(a, ..) andA(d, ..) can be factored and since eitherB(b, ..)+ B(c, ..) = 0 or B(b, ..)−B(c, ..) = 0,
whereas the other one accordingly equals±2 it is then claimed thatΓ =±2. Hence the absolute value|Γ|= +2, and
so integration of this equation with respect to a probability measure and an application of an elementary inequality for
integrals yields the CHSH inequality,

|E(A(a)B(b))+E(A(a)B(c))+E(A(d)B(b))−E(A(d)B(c))| ≤ 2 (2)

Here E stands for the expectation value operator. This proof of the CHSH inequality is based on a mathematical
model that does not adequately represent the Aspect experiment. We first argue on the level of elementary calculus.
In each run of the Aspect experiment only one of the four products inΓ can be measured, a fact that is generally
also appreciated [11], [12].Γ itself is not measured directly since measurement of the four products requires four
incompatible arrangements. It follows that, in particular, the variousA’s andB’s need not be the same, although they
are denoted the same. Thus the conclusion that necessarilyΓ =±2 is not correct.

If we try to interpret the above proof of the CHSH inequality as a proof based on measure theoretic probability
theory we first need to agree on the underlying sample space. According to the classical basic texts on probability
theory by Feller [13] and on measure theory by Halmos [14] for probability theory to apply to real world problems,
a one-to-one correspondence between the elements of the sample space and the experiments to be performed must be
established first. A random variable is by definition a function (measurable in the sense of measure theory) defined
on that sample space, i.e. to each performed experiment there is a well-defined value attached to it, the value that the
random variable assumes. Because, as was noted above, the Aspect experiment does not measureΓ itself, without any
additional assumptions on the stochastic relationship between the potential hidden variables and the setting vectors,
Γ may not be a well-defined function on any sample space, thus may not be a random variable. This is not just a
mathematical technicality because the following issue is important. It has been known (see e.g. the critiques by L.
Accardi [15] and A. Fine [16]), that the crucial ingredient in the standard proof of the CHSH inequality, as reproduced
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above, was the assumption that the four random variablesA(a),A(d),B(b),B(c) can be defined on the same probability
space, thereby equating the variousA andB in Γ. At first glance this only seems to contradict the fact that the settings
can not be all simultaneously considered which is, in many cases, only a technicality. For example, a fair die can
be thrown six times or six fair dice can be thrown once, the resulting statistics is all the same. However, in order to
establish thatΓ is a random variable, thatΓ =±2 and in turn to take the expectation valueE(Γ) resulting in the CHSH
inequality requires that the joint distributions of the four pairs[A(a),B(b)], [A(a),B(c)], [A(d),B(b)] and[A(d),B(c)]
can be realized as the marginal distributions of the fourfold distribution of [A(a), A(d), B(b), B(c)]. For certain special
cases this can indeed be established (see proofs at the end of this section). But, in general, this clearly contradicts
the conclusion of the Vorob’ev theorem [1] because, picturesquely speaking, the four joint distributions form a closed
loop. To be more specific we consider the following table.

TABLE 2. Illustration of the Vorob’ev theorem in terms of the covariances
σ .

(+1,+1) (+1,−1) (−1,+1) (−1,−1)

(A(a), B(b)) (1+σab)/4 (1−σab)/4 (1−σab)/4 (1+σab)/4

(A(a), B(c)) (1+σac)/4 (1−σac)/4 (1−σac)/4 (1+σac)/4

(A(d), B(b)) (1+σdb)/4 (1−σdb)/4 (1−σdb)/4 (1+σdb)/4

(A(d), B(c)) (1+σdc)/4 (1−σdc)/4 (1−σdc)/4 (1+σdc)/4

Here accordingly in each rowσ equals the covariance of(A,B), depending on the settings as indicated in(A(.),B(.)).
Under the assumption that eachA and eachB assumes the values+1 and−1 with probability 1

2 the covariancesσ
uniquely determine the entries in Table 2. Quantum mechanics identifies theσ ’s in each of the four rows as the
negative cosines of the angles between the corresponding setting vectors. The Vorob’ev theorem in conjunction with
the Kolmogorov existence and consistency theorem states that, in general, it is not possible to realize four such joint
distributions as marginals of a fourfold distribution of four random variables defined on a single probability space. To
prove this claim directly we choose theσ ’s in the first three rows to equal1√

2
and theσ in the last row to be− 1√

2
. The

above claim follows immediately by an argument similar to the one given in the introduction. Indeed from Table 2 we
obtain that for each of the four probabilities (corresponding to each choice of+1 or−1)

P(A(a) =−1,B(b) =−1,B(c) =±1,A(d) =±1)≤ (1− 1√
2
)/4 (3)

Adding these four probabilities we have

P(A(a) =−1,B(b) =−1)≤ 1− 1√
2

(4)

in contradiction to the value assigned by Table 2.
Hence the fact that for some choices of angles between the setting vectors the CHSH inequality is in contradiction

with the predictions of quantum mechanics is not a consequence of some mysterious nonlocal physical phenomena,
but rather a straightforward consequence of basic mathematics.

Of course, in some particular cases it may be possible to realize these four joint distributions as marginals of a
fourfold distribution, for instance if all fourσ ’s equal zero, i.e. all 16 entries equal1

4, i.e. if the four random variables
are pairwise independent.

The following facts are now evident. In view of the Vorob’ev theorem and example,neither the Bell inequality nor
the CHSH inequality provide a conclusive tool to decide whether or not an objective local model of any particular
experiment can be established. What is really needed is a direct check of whether or not the relevant random variables
can be defined on the same probability space. For the example of Table 1 the Bell inequality,

|E(AB)−E(AC)| ≤ 1−E(BC) (5)

corresponding to the three angles45◦,45◦,90◦ resulting in the covariances1√
2
, 1√

2
,0 is satisfied and yet, as we have

seen,A,B,C can not be defined on the same probability space. Thus for this case Bell’s inequality is fulfilled yet Bell’s
Ansatz still needs to be rejected.

For the mathematically inclined reader we offer the following comments as to what is precisely going on here.
Given three angles or the corresponding unit vectors at least three Bell inequalities can be written down. The one as
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displayed above and two more obtained by cyclic permutation. Now it is not difficult to see that if the direct approach
shows that the three pair distributions cannot be obtained from three random variables defined on the same probability
space then one of these Bell inequalities will be violated. Hence the direct approach is equivalent with checking all
Bell inequalities, because as the above example shows, checking only one of the inequalities may not be enough to
reach the desired conclusion.

On the other hand, for a very small class of parameters (e.g. source parameters [10]) the conclusion of the Bell
theorem that is drawn from locality conditions remains valid. This can be proved in several ways. In [10] we have
presented proofs based on what we called a reordering argument that work in some special situations. For the benefit
of the reader we will reproduce this argument, based on elementary statistics, in the following section. A second
way to establish the Bell theorem in this special situation is in essence the probabilistic counterpart of [10] and is
as follows. We assume that the hidden variable consists only of a source parameterΛ = Λ(ω) that is stochastically
independent of the setting vectors, considered as random variablesX(ω∗) assuming one of the two possibilitiesa or d
in S1, andY(ω∗∗) assuming the valuesb or c in S2, with probability 1

2 each. Because of the hypothesis of the stochastic
independence we can assume that there is a common product probability space, sayΩxΩ∗xΩ∗∗ on whichΛ,X and
Y are well-defined. SinceA andB are assumed to be functions only ofx andλ and only ofy andλ , respectively,
A(X,Λ) andB(Y,Λ) are random variables defined on the same probability space. Hence applying Fubini’s theorem
we conclude thatA(a,Λ(ω)),A(d,Λ(ω)),B(b,Λ(ω)) andB(c,Λ(ω)) are also random variables that are all defined on
the same probability space. Thus in this special case the entityΓ turns out to be a random variable and hence in this
special case the proof of the CHSH inequality is correct. A third way, and at the same time the most efficient one to
establish the Bell theorem in this special situation is based on the above example that shows that the four joint pair
distributions in Table 2 cannot be obtained as the marginals of four random variablesA(a),A(d),B(b) andB(c). Just
above, in connection with Fubini’s theorem we remarked that substitution ofΛ would entail the opposite statement.
Hence such parametersΛ can be ruled out.

Another, more general instance where the Bell theorem remains valid is when in addition to the source parameter
Λ instrument parametersΛ∗ in S1 andΛ∗∗ in S2 are considered such that these three parameters are stochastically
independent. The same type of arguments will work in this special case, too. Hence, these special classes of hidden
variables can be ruled out, that is for these classes the Bell theorem is correct.

Of course, the validity of the Bell theorem in these special cases does not imply that the Bell theorem is correct in
general, that is that all classes of hidden variables that can be reasonably considered of being Einstein-local can be
ruled out. For instance the above type of arguments no longer work for what we call the extended parameter space,
that consists of a source parameterΛ, and time and setting dependent instrument parametersΛ∗a(t) andΛ∗∗b (t) in S1
andS2, respectively. Because of the special role of time it is admissible for the instrument parameters to be correlated
by time without violating the principle of Einstein-locality.

Proofs based on elementary statistics

Some standard text books consider the data accumulated by sampling the aboveΓ. This is just the equivalent
statistical realization of the probability model considered in the previous section. However, in general,Γ cannot be
sampled because, in general,Γ is not a random variable. A reordering argument works for the special situations
considered above. As in the previous section let us assume thatΛ and the setting vectorsX andY are stochastically
independent and thatX assumes the vector valuesa andd andY assumes the vector valuesb andc with probability
1/2 each. To avoid dealing withε ’s, let us assume in addition thatΛ assumes only finitely many valuesλs with
positive probabilityps,s= 1,2, ...,M. If a large numberN of runs of the Aspect experiment is performed then for each
s= 1,2, ...,M we expect the parameter valueλs to occur approximatelyN.ps times. Since by independence each pair
of setting vectors (a,b), (a,c), (d,b) and (d,c) occurs about14 of the times eachλs occurs, at the end of the day we can
reorder and rearrange the data points in approximately1

4N.ps rows all reporting to the sameλs. Because now theλs
are the same in each row the corresponding valuesγ are indeed±2. Taking averages, denoted by< > and discarding
rows that are possibly incomplete we obtain the CHSH inequality in the form

|< a j .b j > + < a j .c j > + < d j .b j >−< d j .c j > | ≤ 2 (6)

Note that the lower casea,b, ... denote the outcomes corresponding to the random variables with the corresponding
settings but not the settings themselves which are always boldfaced. This is in agreement with the standard notation
[11].
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Again this line of argument fails for our extended parameter space.

Proofs based on sampling tables

There are several arguments in the literature linking the validity of the Bell theorem with sampling some kind of table
and often without any reference to the issue of hidden variables. In contrast to the above situations in these arguments
the emphasis is placed solely on the set of potentially measured data. Most of these arguments are deficient. Below
we shall comment only on one of these tables. But first, in analogy to Table 2, we describe the sampling procedure
that mimics the Aspect experiment, reviewing again the logical issues that need to be considered when setting up a
proper mathematical model. In the following table the 16 possible outcomes of the measurement pairs in the Aspect
experiment are represented as follows.

TABLE 3. 16 possible outcomes of a Aspect experiment
run

a(+).b(+) a(+).b(−) a(−).b(+) a(−).b(−)

a(+).c(+) a(+).c(−) a(−).c(+) a(−).c(−)

d(+).b(+) d(+).b(−) d(−).b(+) d(−).b(−)

d(+).c(+) d(+).c(−) d(−).c(+) d(−).c(−)

Within each row a particular product is chosen with a certain fixed probability such that the probabilities for
each row add up to 1. In other words the corresponding table of these probabilities constitutes a 4x4 stochastic
matrix. The example given in Table 2 represents the prediction by quantum mechanics. Then each row in Table 3 is
sampled according to the probability distribution (for instance, of Table 2) corresponding to that row and the average
corresponding to the outcomes of that row is calculated. Then the average of the fourth row is subtracted from the
sum of the averages of the first three rows. Call the resulting quantity< γ >. The CHSH inequality is equivalent to
the statement that no matter how the probabilities in the corresponding 4x4 stochastic matrix are chosen, the resulting
< γ > never exceeds 2 in absolute value. However, it is easy to give examples of 4x4 stochastic matrices with the
property that if we sample Table 3 according to the probabilities of such a table then< γ > can be certainly bigger
than 2, even as big as 4. If, in addition, we also mimic the delayed choice provision of the Aspect experiment then "after
emission of a pair of particles" a row of the above table gets chosen with probability1/4 and then from this chosen row
a sample of size 1 is taken according to the corresponding probability distribution. After a series of such "emissions"
< γ > is then calculated accordingly. The Aspect experiment shows that the claim that< γ > never exceeds 2 in
absolute value is false for some 4x4 stochastic matrices and the Vorob’ev theorem provides the mathematical rationale
for this fact. Seen from this vantage point, the delayed choice provision in the Aspect experiment is of no consequence.

Another demonstration of the conclusion of the Vorob’ev theorem is given unwittingly in Table 6-1, on page 167
of the text-book by Peres [11]. There Peres gives lower bounds on the covariances of certain double sequences
(a j ,b j),(b j ,c j),(c j ,d j) and(d j ,a j) and then wonders why, at the end, the covariance of the double sequence(d j ,a j)
satisfies two conflicting inequalities. Because, as observed above, the joint distribution of a pair of random variables,
each assuming with probability1/2 the values +1 and -1 only, can be expressed in terms of their covariance, and
since the empirical distributions of the four double sequences, again expressed picturesquely, form a closed loop the
Vorob’ev theorem says that, in general, it is not possible to find a consistent joint distribution of four random variables
yielding the above imagined data set on which the argument of Peres is based on.

THE GHZ APPROACH

A decisive and penetrating analysis of the GHZ approach has been given by Khrennikov [17]. Hence we shall review
here only a few of the basic ingredients needed below to describe the computer experiment. In the paper "Bell’s
theorem without inequalities", by Greenberger, Horne, Shimony, Zeilinger [18] the implicit assumption that theλ that
occurs in all the relations must be the same is clearly unfounded. The results of the actual experiments are reported in
[7]. For the photonsi = 1,2,3 the authors introduce “elements of realityXi with values±1 for H ′(V ′) polarizations and
Yi with values±1 for R(L)" polarizations. The authors claim that the elements of realityXi andYi satisfy the relation

Y1.Y2.X3 =−1, Y1.X2.Y3 =−1, X1.Y2.Y3 =−1 (7)
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Invoking counterfactual reasoning, the authors conclude that

Yi .Yi = +1 (8)

and thus by Eq.(7) that
X1.X2.X3 =−1 (9)

Counterfactual reasoning by itself is, in our opinion, not objectionable. One certainly can argue that, if I had
measured with different settings and if I had the same photon(s) then I would have obtained...In mathematical terms
this just means that for a givenω, representing a given experiment, the random variablesXi andYi may assume one
of the valuesXi(ω) andYi(ω), respectively, wherei = 1,2,3. However, this fact does not permit the conclusion that
in Eq.(7) the twoY1 necessarily assume the same values, i.e. they are the same random variables, because they are
definitely obtained in two distinctly different experiments. A similar statement holds forY2 andY3. Thus subject to this
interpretation Eq.(8) is false as it stands.

Proceeding now with the discussion of the experiments of Pan et al. [7] we note that Figure 3 of their paper depicts
the histograms for the actualyyx,yxy, andxyyexperiments. The error rate for each of these three experiments is given
with 0.15±0.02. This translates into an error rate for thexxxresult extracted from Eq.(7) of0.45±0.035which is close
to 50%. Figure 4 of their paper shows thexxx results measured directly in a separate experiment. With success rate
0.87±0.04, it demonstrates that the product in Eq.(9) equals +1. This contradiction is statistically highly significant
and is the basis for their claim that, as a consequence of their test, for the three-photon entanglement the “quantum
physical predictions are mutually contradictory with expectations based on local realism.”

We shall show now that their claim of non-locality is false by providing an example that can be simulated on three
independent computers. Let

rk(t) = sign[sin(2kπt)] for t > 0 (10)

denote thek-th Rademacher function. Note thatrk has period2−(k−1). The following table can serve as a basis for this
simulation

TABLE 4. Computer simulation of the experiment of Pan et al. [7]

yyx, t0 < t < t1 yxy, t2 < t < t3 xyy, t4 < t < t5 xxx, t6 < t < t7

Comp1 Y1 =−r1 Y1 =−r1 X1 = r2.r3 X1 = r2.r3

Comp2 Y2 = r2 X2 = r1.r3 Y2 = r2 X2 = r1.r3

Comp3 X3 = r1.r2 Y3 = r3 Y3 =−r3 X3 = r1.r2

Heret1− t0 is the length of time theyyxexperiment is running,t2− t1 is the length of time it takes the experimenters
to switch the experimental set-up from anyyx experiment to anyxy experiment.t3− t2 is the length of time theyxy
experiment is running andt4− t3 again the time to switch and so forth as described in Table 4. Each of the three
equations in Eq.(7) holds on the entire time interval where they are defined. Moreover, we have

X1.X2.X3 = +1 (11)

instead of Eq.(9), if we mimic at a later time thexxxexperiment according to the last column in Table 4. Furthermore,
each X and each Y equals +1 or -1 half of the time. The essential point here is, of course, that for given equipment
settings, e.g.yxy, we can assume that equipment parameters are such thatY may be described by a certain Rademacher
function, e.g.Y3 = r3, while for the otherxyywe may haveY3 = −r3. Here we have made use of the fact that in the
actual experiment the settings e.g.yyx are set and used for a longer period of time so that a mutual report can be
established by sub-light velocities between the measurement stations as to which overall setting (yxy or xyy etc.) is
used. For a given setting, the outcomes of the various experiments are, of course, only “known" at a given detector,
not at the others. Only the choice of measurement time, which is random, determines the outcomes together with the
Rademacher functions that are characteristic for a given setting. Of course the three Rademacher functions in Table 4
can be replaced by three other Rademacher functions with arbitrarily large but different subscripts if faster fluctuation
between +1 and -1 is desired.
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CONCLUSIONS

We have given a summary of the reasons why most of the proofs leading to the Bell inequality and to the CHSH
inequality are deficient. In particular we have shown that in view of the theorem of Vorob’ev the possibility of
agreement of these inequalities with the Aspect experiment is immediately lost as soon asA,B are assumed to be the
functions defined by Bell: his inequality follows independently of any physics or locality conditions. We have shown
that time and setting dependent instrument parameters that are Einstein-localneed not satisfyBell-type inequalities. In
fact, none of the known arguments leading to the CHSH inequality can accommodate these parameters. Also, we have
presented a method more efficient than the Bell and the CHSH inequality that can help to weed out specific classes of
hidden variables. This method does not rely on inequalities, but rather on a simple determination whether a given set of
joint pair distributions can be realized as the marginals of the joint distribution of random variables defined on the same
probability space. As mentioned in [10], we do not have a proof that in reality, not just mathematically, these setting
and time dependent parameters do exist for the Aspect experiment. Such a proof would be established indirectly if, for
instance, one would be able to play the Bell game on two (stochastically and/or functionally) independent computers
with the same clock time. Given no further information, we see this as a very difficult problem. However, playing a
Bell-type game for the GHZ approach is relatively easy as we have demonstrated in the last section. For GHZ type
of experiments we do have an existence proof for setting and time dependent instrument parameters because of the
possibility of the computer experiment. We believe that it is only a matter of time that the same will be found for the
Aspect experiment. Using the (perhaps somewhat unreasonable) physical assumption of history dependent instrument
outcomes, we have found it already [19].
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