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MODELS of RANDOM GRAPHS

Erdos-Renyi G(n, p): start with the complete n-graph, retain each

edge with probability p (independently).

Random geometric graph G(n, r). Place n points uniformly at

random in [0, 1]2. Connect any two points distance at most r apart.

Consider n large and p or r small.

Expected degree of a typical vertex is approximately:

np for G(n, p)

nπr2 for G(n, r)

Often we choose p = pn or r = rn to make this expected degree Θ(1).

In this case G(n, rn) resembles the following infinite system:
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CONTINUUM PERCOLATION (see Meester and Roy 1996)

Let Pλ be a homogeneous Poisson point process in Rd with intensity

λ, i.e.

Pλ(A) ∼ Poisson(λ|A|)
and Pλ(Ai) are independent variables for A1, A2, . . . disjoint.

Gilbert Graph. Form a graph Gλ := G(Pλ) on Pλ by connecting two

Poisson points x, y iff |x− y| ≤ 1.

Form graph G0
λ := G(Pλ ∪ {0}) similarly on Pλ ∪ {0}.

Let pk(λ) be the prob. that the component of G0
λ containing 0 has k

vertices (also depends on d).

p∞(λ) := 1−∑∞

k=0 pk(λ) be the prob. that this component is infinite.
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RANDOM GEOMETRIC GRAPHS (rescaled) (Penrose 2003)

Let U1, . . . , Un be independently uniformly randomly scattered in a

cube of volume n/λ in d-space. Form a graph Gn,λ on {1, 2, . . . , n} by

i ∼ j iff |Ui − Uj | ≤ 1

Define |Ci| to be the order of the component of Gn,λ containing i. It

can be shown that n−1
∑n

i=1 1{|Ci| = k} P−→ pk(λ) as n → ∞, i.e.

for large n,

P

[

n−1
n
∑

i=1

1{|Ci| = k} ≈ pk(λ)

]

≈ 1

That is, the proportionate number of vertices of Gn,λ lying in

components of order k, converges to pk(λ) in probability.
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A FORMULA FOR pk(λ).

pk+1(λ) = (k + 1)λk

∫

(Rd)k
h(x1, . . . , xk)

× exp(−λA(0, x1, . . . , xk))dx1 . . . dxk

where h(x1, . . . , xk) is 1 if G({0, x1, . . . , xk}) is connected and

0 ≺ x1 ≺ · · · ≺ xk lexicographically, otherwise zero;

and A(0, x1, . . . , xk) is the volume of the union of 1-balls centred at

0, x1, . . . , xk.

Not tractable for large k.
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THE PHASE TRANSITION

If p∞(λ) = 0, then Gλ has no infinite component, almost surely.

If p∞(λ) > 0, then Gλ has a unique infinite component, almost surely.

Also, p∞(λ) is nondecreasing in λ.

Fundamental theorem: If d ≥ 2 then

λc(d) := sup{λ : p∞(λ) = 0} ∈ (0,∞).

If d = 1 then λc(d) = ∞. From now on, assume d ≥ 2. The value of

λc(d) is not known.
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LARGE COMPONENTS FOR THE RGG

Consider again the random geometric graph Gn,λ (on n uniform

random points in a cube of volume n/λ in d-space)

Let L1(Gn,λ) be the size of the largest component, and L2(Gn,λ) the

size of the second largest component (‘size’ measured by number of

vertices). As n → ∞ with λ fixed (and ζ(λ) as on P16 below):

if λ > λc then n−1L1(Gn,λ)
P−→ p∞(λ) > 0

if λ < λc then (logn)−1L1(Gn,λ)
P−→ 1/ζ(λ)

and for the Poissonized RGG GNn,λ (Nn ∼ Poisson (n)),

L2(GNn,λ) = O(logn)d/(d−1) in probability if λ > λc
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CENTRAL AND LOCAL LIMIT THEOREMS. Let K(Gn,λ) be the

number of components of Gn,λ. As n → ∞ with λ fixed,

P

[

K(Gn,λ)− EK(Gn,λ)√
n

≤ t

]

→ Φσ(t) :=

∫ t

−∞

ϕσ(x)dx

where ϕσ(x) := (2πσ2)−1/2e−x2/(2σ2) (normal pdf); and if λ > λc,

P

[

L1(Gn,λ)− EL1(Gn,λ)√
n

≤ t

]

→ Φτ (t).

Here σ and τ are positive constants, dependent on λ. Also,

sup
z∈Z

{

n1/2P [K(Gn,λ) = z]− ϕσ

(

z −EK(Gn,λ))√
n

)}

→ 0.
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ISOLATED VERTICES. Suppose d = 2. Let N0(Gn,λ) be the

number of isolated vertices. The expected number of isolated vertices

satisfies

EN0(Gn,λ) ≈ n exp(−πλ)

so if we fix t and take λ(n) = (logn+ t)/π, then as n → ∞,

EN0(Gn,λ(n)) → e−t.

Also, N0 is approximately Poisson distributed so

P [N0(Gn,λ(n)) = 0] → exp(−e−t).

9



CONNECTIVITY. Note Gn,λ is connected iff K(Gn,λ) = 1.

Clearly P [K(Gn,λ) = 1] ≤ P [N0(Gn,λ(n)) = 0]. Again taking

λ(n) = (logn+ t)/π with t fixed, it turns out (Penrose 1997) that

lim
n→∞

P [K(Gn,λ(n)) = 1] = lim
n→∞

P [N0(Gn,λ(n)) = 0] = exp(−e−t)

or in other words,

lim
n→∞

(P [K(Gn,λ(n)) > 1]− P [N0(Gn,λ(n)) > 0]) = 0.
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THE CONNECTIVITY THRESHOLD

Let V1, . . . , Vn be independently uniformly randomly scattered in

[0, 1]d. Form a graph Gr
n on {1, 2, . . . , n} by

i ∼ j iff |Vi − Vj | ≤ r.

Given the values of V1, . . . , Vn, define the connectivity threshold

ρn(K = 1), and the no-isolated-vertex threshold ρn(N0 = 0), by

ρn(K = 1) = min{r : K(Gr
n) = 1};

ρn(N0 = 0) = min{r : N0(Gr
n) = 1}.

The preceding result can be interpreted as giving the limiting

distributions of these thresholds (suitably scaled and centred) as

n → ∞: they have the same limiting behaviour.
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Taking λ(n) = (logn+ t)/π with t fixed, we have

P [K(Gn,λ(n)) = 1] = P [K(G
√

λ(n)/n
n ) = 1]

= P
[

ρn(K = 1) ≤
√

(logn+ t)/(πn)
]

so the earlier result

lim
n→∞

P [K(Gn,λ(n)) = 1] = lim
n→∞

P [N0(Gn,λ(n)) = 0] = exp(−e−t)

implies

lim
n→∞

P [nπ(ρn(K = 1))2 − logn ≤ t] = exp(e−t)

and likewise for ρn(N0) = 0. In fact we have a stronger result:

lim
n→∞

P [ρn(K = 1) = ρn(N0 = 0)] = 1.
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MULTIPLE CONNECTIVITY. Given k ∈ N, a graph is

k-connected if for any two distinct vertices there are k disjoint paths

connecting them.

Let ρn,k be the smallest r such that Gr
n is k-connected.

Let ρn(N<k = 0) be the smallest r such that Gr
n has no vertex of

degree less than k (a random variable determined by V1, . . . , Vn).

Then

lim
n→∞

P [ρn,k = ρn(N<k = 0)] = 1.

The limit distribution of ρn(N<k = 0) can be determined via Poisson

approximation, as with ρn(N0 = 0).
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HAMILTONIAN PATHS

Let ρn(Ham) be the smallest r such that Gr
n has a Hamiltonian path

(i.e. a self-avoiding tour through all the vertices). Clearly

ρn(Ham) ≥ ρn(N<2 = 0).

In fact (Balogh, Bollobas, Walters, Krivelevich, Müller 2009),

lim
n→∞

P [ρn(Ham) = ρn(N<2 = 0)] = 1.
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CONTINUITY OF p∞(λ)

Clearly p∞(λ) = 0 for λ < λc

Also p∞(λ) is increasing in λ on λ > λc.

Less trivially, it is known that p∞(λ) is continuous in λ on

λ ∈ (λc,∞) and is right continuous at λ = λc, i.e.

p∞(λc) = lim
λ↓λc

p∞(λ).

So p∞(·) is continuous on (0,∞) iff

p∞(λc) = 0.

This is known to hold for d = 2 (Alexander 1996) and for large d

(Tanemura 1996). It is conjectured to hold for all d.
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LARGE-k ASYMPTOTICS FOR pk(λ)

Suppose λ < λc. Then there exists ζ(λ) > 0 such that

ζ(λ) = lim
n→∞

(

−n−1 log pn(λ)
)

or more informally, pn(λ) ∼ (e−ζ(λ))n.

Proof uses subadditivity. With xn
1 := (x1, . . . , xn), recall

pn+1(λ) = (n+ 1)λn

∫

h(xn
1 )e

−λA(0,xn

1
)dxn

1 .

Setting qn := pn+1/(n+ 1), can show qnqm ≤ qn+m−1, so

− log qn/(n− 1) → infn≥1(− log qn/(n− 1)) := ζ as n → ∞.

That ζ(λ) > 0 is a deeper result.
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LARGE-k ASYMPTOTICS: THE SUPERCRITICAL CASE

Suppose λ > λc. Then

lim sup
n→∞

(

n−(d−1)/d log pn(λ)
)

< 0

lim inf
n→∞

(

n−(d−1)/d log pn(λ)
)

> −∞

Loosely speaking, this says that in the supercritical case pn(λ)

decays exponentially in n1−1/d, whereas in the subcritical case it

decays exponentially in n.
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OTHER PROPERTIES OF RGGS

Asymptotic behaviour of other quantities arising from of random

geometric graph have been considered, including

The largest and smallest degree.

The clique and chromatic number.

In some cases, non-uniform distributions of the vertices V1, . . . , Vn

have been considered.
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