Random Parking and Rubber Elasticity

Mathew Penrose *(University of Bath)* Joint work with Antoine Gloria INRIA, Lille

Imperial College Stochastic Analysis Seminar January 2013

Rubber Elasticity

Let $d, n \in \mathbb{N}$ (e.g. d = n = 3).

Suppose $D \subset \mathbf{R}^d$ is a bounded domain. D represents a piece of rubber. Let $\mathcal{L} \subset \mathbb{R}^d$ be a locally finite point process.

 $\mathcal{L} \cap D$ the locations of individual "molecules". For $x, y \in \mathcal{L}$ write $x \sim y$ if they are Delaunay neighbours, let \mathcal{T} be the Delaunay triangulation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Each $u \in C(D, \mathbb{R}^n)$ represents a deformation of the rubber. u(x) is the location of $x \in D$ under deformation.

We'll define a class of energy functionals $F: C(D, \mathbb{R}^n) \to \mathbb{R}$.

F(u), the energy of deformation u. Let $u_{\mathcal{L}}$ be affine on each $T \in \mathcal{T}$ with $u_{\mathcal{L}} \equiv u$ on \mathcal{L}

The energy functional

$$F_{\mathcal{L}}^{D}(u) = \sum_{x,y \in \mathcal{L}, x \sim y, [x,y] \subset D} |y - x|^{d} f\left(\frac{u(y) - u(x)}{|y - x|}\right) + \sum_{T \in \mathcal{T}(\mathcal{L}), T \subset D} |T| g(\nabla u_{\mathcal{L}}|_{T})$$

Assume we are given $f \in C(\mathbb{R}^n, \mathbb{R}^+)$ the bond energy and $g \in C(M^{n \times d}, \mathbb{R}^+)$ the cell energy (given).

Assume growth bounds on f, g: for some p > 1, C > 0,

$$C^{-1} \le \frac{f(z)}{|z|^p} \le C, \quad |z| \ge 1$$

 $g(\Lambda) \le C \|\Lambda\|^p, \|\Lambda\| \ge 1.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Desirable properties of \mathcal{L} , our point process in \mathbb{R}^d

$$\mathcal{L}$$
 is stationary if $x + \mathcal{L} \stackrel{\mathcal{D}}{=} \mathcal{L}$, for all $x \in \mathbb{R}^d$.

 \mathcal{L} is *isotropic* if $R\mathcal{L} \stackrel{\mathcal{D}}{=} \mathcal{L}$ for all $R \in SO_d$.

 \mathcal{L} is in general position (or just general) if no d+1 points of \mathcal{L} lie in the same hyperplane, and no d+2 points are in the same hypershpere.

Let \mathcal{A}_{lf} be the class of locally finite point configurations in \mathbb{R}^d .

 \mathcal{L} is *ergodic* if for all $A \subset \mathcal{A}_{lf}$ with $T_x(A) = A$ for all $x \in \mathbb{R}^d$ (where T_x is translation by x) we have $P[\mathcal{L} \in A] \in \{0, 1\}$.

For 0 < a < b let $\mathcal{A}_{a,b} \subset \mathcal{A}_{lf}$ be the class of ξ such that

 $\begin{array}{lll} x,y \in \xi & \Longrightarrow & |x-y| > a & (\text{hard core condition}) \\ x \in \mathbb{R}^d & \Longrightarrow & \xi \cap B(x,b) \neq \emptyset & (\text{no empty space condition}) \\ B(x,b) & := & \{y : |y-x| \le b\}. \end{array}$

Let $\mathcal{A}_{a,\infty}$ be those ξ satisfying just the hard core condition.

Gamma-convergence

If
$$F_n$$
 and F are real-valued functions on some metric space X .
we say for $x \in X$ that $F_n \xrightarrow{\Gamma} F$ at x if
(a) For all sequences $x_n \to x$ we have $\liminf F_n(x_n) \ge F(x)$, and
(b) \exists sequence $x_n \to x$ with $F_n(x_n) \to F(x)$.
We say $F_n \xrightarrow{\Gamma} F$ if $F_n \xrightarrow{\Gamma} F$ at x for all $x \in X$.
Set $Q_r = [-r/2, r/2]^d$.
Recall we assume f (bond energy) and g (cell energy) satisfy growth
bounds of order $p > 1$. We now state a

Homogenization result (Alicandro, Cicalese and Gloria 2011)

◆□>
◆□>
●

$$F_{\mathcal{L}}^{D}(u) = \sum_{x \sim y, [x,y] \subset D} |y - x|^{d} f\left(\frac{u(y) - u(x)}{|y - x|}\right) + \sum_{T \in \mathcal{T}(\mathcal{L}): T \subset D} |T|g(\nabla u_{\mathcal{L}}|_{T})$$

Suppose 0 < a < b and \mathcal{L} is stationary, ergodic, general and a.s. in $\mathcal{A}_{a,b}$. Then a.s. as $\varepsilon \downarrow 0$ we have $F_{\varepsilon \mathcal{L}}^D \xrightarrow{\Gamma} F_{\text{hom}}^D$ on $L^p(D, \mathbb{R}^n)$, where

$$F_{\text{hom}}^{D}(u) = \begin{cases} \int_{D} W_{\text{hom}}(\nabla u(x)) dx, & u \in W^{1,p}(D, \mathbb{R}^{n}). \\ +\infty & \text{otherwise} \end{cases}$$
$$W_{\text{hom}}(\Lambda) = \lim_{r \to \infty} r^{-d} \inf\{F_{\mathcal{L}}^{Q_{r}}(u) : u(x) = \Lambda \cdot x \text{ on } Q_{r} \setminus Q_{r-2b}\}$$
(1)

Idea - divide D into cubes of side $\delta = \delta(\epsilon)$ with $\varepsilon \ll \delta \ll 1$. Take $u_{\varepsilon} = u$ (approx. affine) near boundary of each cube. Let u_{ε} optimise the energy inside each cube, subject to this constraint. Discuss (1) later.

Existence of a stationary ergodic general \mathcal{L} in $\mathcal{A}_{a,b}$: Random parking.

Let $\rho > 0$. Let X_1, X_2, \ldots be independent uniform random vectors in D. X_n is *accepted*, unless $\exists m \leq n$ with X_m accepted and $|X_n - X_m| \leq \rho$. Let $\xi^D = \{ \text{accepted } X_i \}$. (random parking process on D). It has the a-hardcore and b-no-empty space properties on D for any $a < \rho < b$. ξ^{Q_r} has weak limit ξ on \mathbb{R}^d (stationary ergodic, general, in $\mathcal{A}_{a,b}$). ξ obtained from parking protocol for homogeneous Poisson point process $\{(X_i, T_i)\}$ in $\mathbb{R}^d \times \mathbb{R}^+$, where T_i is arrival time of X_i .

Parking protocol on this Poisson process well-defined by a first passage percolation argument (Penrose 2001).

(日) (型) (目) (日) (1000)

Subadditivity

Suppose $\mathcal{E}(S, R)$ is a real-valued energy functional defined for all locally finite $S \subset \mathbb{R}^d$, and rectangles R, e.g. p-weighted travelling salesman cost

$$\mathcal{E}_{TSP,p}(S,R) = \min\{\sum_{i=1}^{n} |x_i - x_{i-1}|^p : S \cap R = \{x_1, \dots, x_n\}, x_0 = x_n\}$$

Known since BHH (1959) that there exists β such that as $r \to \infty$,

$$r^{-d}\mathcal{E}_{TSP,1}(\mathcal{H},Q_r) \to \beta$$

where \mathcal{H} is a homogeneous PPP on \mathbb{R}^d .

We shall describe generic properties of \mathcal{E} guaranteeing such convergence for $\mathcal{E}_{TSP,p}$ and many other examples, e.g. the minimal matching and minimal spanning tree. (cf. Redmond and Yukich (1994), Yukich (1999)).

Properties of $\mathcal{E}_{TSP,p}(\cdot)$ (and other choices of $\mathcal{E}(\cdot)$ with 'order' p)

- Translation invariant: $\mathcal{E}(x+S, x+R) = \mathcal{E}(S, R)$, all $x \in \mathbb{R}^d$, all S, R.
- Almost subadditive: $\mathcal{E}(S \cup T, R) \leq \mathcal{E}(S, R) + \mathcal{E}(T, R) + C(\operatorname{diam} R)^p$.
- Smooth: $|\mathcal{E}(T,R) \mathcal{E}(S,R)| \le C(\operatorname{diam} R)^p(\operatorname{card}((S \triangle T) \cap R))^{1-p/d}.$
- There is an approximate energy functional $\tilde{\mathcal{E}}(S, R)$ defined for all rectangles $R \subset \mathbb{R}^d$ with $\tilde{\mathcal{E}}$ translation invariant, and
- Superadditive: if $R_0 = \cup_{i=1}^n R_i$ (rectangles) then

$$\tilde{\mathcal{E}}(S,R) \ge \sum_{i=1}^{m} \tilde{\mathcal{E}}(S,R_i)$$

• Close to \mathcal{E} of order p: $r^{-p}|\tilde{\mathcal{E}}(S,Q_r) - \mathcal{E}(S,Q_r)| = o(\operatorname{card}(S \cap Q_r)).$ For $\mathcal{E}_{TSP,p}$ take $\tilde{\mathcal{E}}(S,R)$ to be the TSP cost with 'free travel' outside R.

General LLNs for \mathcal{E}

Suppose $p \ge 1$ and \mathcal{E} is TI, almost subadditive, and smooth of order p. Suppose there exists $\tilde{\mathcal{E}}(S, R)$ which is TI, superadditive and close to \mathcal{E} of order p. Then (Redmond/Yukich) there is a constant such that

$$r^{-d}\mathcal{E}(\mathcal{H},Q_r) \to \gamma \ a.s.$$

Moreover (Gloria-P. 2012), if \mathcal{L} is stationary and ergodic with $\mathcal{L} \in \mathcal{A}_{a,\infty}$ for some a > 0, then there exists $\gamma \in \mathbb{R}$ such that

$$r^{-d}\mathcal{E}(\mathcal{L},Q_r) \to \gamma \ a.s.$$

Proof via multiparameter subadditive ergodic theorem (Akcoglu/Krengel). Example: take $\mathcal{E}(S, R) = \inf\{F_S^R(u) : u(x) = \Lambda x \text{ near } \partial R\}.$

Back to random parking

Results described so far show that if ξ is random parking on \mathbb{R}^d then for \mathcal{E} satisfying hypotheses of subadditivity etc., we have for some γ that

$$r^{-d}\mathcal{E}(\xi,Q_r) \to \gamma$$

e.g. with \mathcal{E} the *p*-weighted TSP on $\xi \cap Q_R$ or with \mathcal{E} the minmum of $F_{\xi}^{Q_r}(u)$ given Λ -boundary conditions.

Would like to replace ξ by ξ^{Q_r} in the above results, since (i) any simulation studies would be on a finite region (ii) no physical reason for process generating ξ on $D = Q_r$ to depend on input from outside D Gloria-P. (2012): can indeed replace ξ by ξ^{Q_r} in the above.

Also: can extend the earlier homogenization result:

$$F_{\mathcal{L}}^{D}(u) = \sum_{x \sim y, [x,y] \subset D} |y - x|^{d} f\left(\frac{u(y) - u(x)}{|y - x|}\right) + \sum_{T \in \mathcal{T}(\mathcal{L}): T \subset D} |T| g(\nabla u_{\mathcal{L}}|_{T})$$

Suppose ξ^D_{ρ} is the random parking process in D with hard-core parameter ρ . Then for $\rho > 0$, as $\varepsilon \downarrow 0$ we have $F^D_{\xi^D_{\varepsilon\rho}} \xrightarrow{\Gamma} F^D_{\text{hom}}$ on $L^p(D, \mathbb{R}^n)$, where

$$F_{\text{hom}}^{D}(u) = \begin{cases} \int_{D} W_{\text{hom}}(\nabla u(x)) dx, & u \in W^{1,p}(D, \mathbb{R}^{n}). \\ +\infty & \text{otherwise} \end{cases}$$

$$W_{\text{hom}}(\Lambda) = \lim_{r \to \infty} r^{-d} \inf\{F_{\xi^{Q_r}}^{Q_r}(u) : u(x) = \Lambda \cdot x \text{ on } Q_r \setminus Q_{r-2b}\}.$$
 (2)

Proof relies heavily on exponential stabilization of random parking (Schreiber, P. and Yukich 2007)

Exponential stabilization

Let \mathcal{H} be a homogeneous Poisson process in $\mathbb{R}^d \times \mathbb{R}^+$. For $x \in \mathbb{Z}^d$, let $Q_x = x + [0, 1]^d$. Let $\xi_x = \xi(\mathcal{H}) \cap (Q_x \times [0, \infty))$, where $\xi(\cdot)$ is the set of accepted points for the random parking process with hard-core parameter 1.

Exponential stabilization says that for each x there exists R_x such that:

- ξ_x is unaffected by changes to \mathcal{H} outside $B_{R_x}(x) \times [0,\infty)$.
- $P[R_x > t] \le e^{-\alpha t}$, some $\alpha > 0$