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Rubber Elasticity

Let d, n ∈ N (e.g. d = n = 3).

Suppose D ⊂ Rd is a bounded domain. D represents a piece of rubber.

Let L ⊂ Rd be a locally finite point process.

L ∩D the locations of individual “molecules”. For x, y ∈ L write x ∼ y if
they are Delaunay neighbours, let T be the Delaunay triangulation.

Each u ∈ C(D,Rn) represents a deformation of the rubber.
u(x) is the location of x ∈ D under deformation.

We’ll define a class of energy functionals F : C(D,Rn)→ R.

F (u), the energy of deformation u.
Let uL be affine on each T ∈ T with uL ≡ u on L
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The energy functional

FDL (u) =
∑

x,y∈L,x∼y,[x,y]⊂D

|y − x|df
(
u(y)− u(x)

|y − x|

)

+
∑

T∈T (L),T⊂D

|T |g(∇uL|T )

Assume we are given f ∈ C(Rn,R+) the bond energy

and g ∈ C(Mn×d,R+) the cell energy (given).

Assume growth bounds on f, g: for some p > 1, C > 0,

C−1 ≤ f(z)

|z|p
≤ C, |z| ≥ 1

g(Λ) ≤ C‖Λ‖p, ‖Λ‖ ≥ 1.
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Desirable properties of L, our point process in Rd

L is stationary if x+ L D= L, for all x ∈ Rd.

L is isotropic if RL D= L for all R ∈ SOd.

L is in general position (or just general) if no d+ 1 points of L lie in the
same hyperplane, and no d+ 2 points are in the same hypershpere.

Let Alf be the class of locally finite point configurations in Rd.

L is ergodic if for all A ⊂ Alf with Tx(A) = A for all x ∈ Rd (where Tx is
translation by x) we have P [L ∈ A] ∈ {0, 1}.

For 0 < a < b let Aa,b ⊂ Alf be the class of ξ such that

x, y ∈ ξ =⇒ |x− y| > a (hard core condition)

x ∈ Rd =⇒ ξ ∩B(x, b) 6= ∅ (no empty space condition)

B(x, b) := {y : |y − x| ≤ b}.

Let Aa,∞ be those ξ satisfying just the hard core condition.
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Gamma-convergence

If Fn and F are real-valued functions on some metric space X.

we say for x ∈ X that Fn
Γ−→ F at x if

(a) For all sequences xn → x we have lim inf Fn(xn) ≥ F (x), and
(b) ∃ sequence xn → x with Fn(xn)→ F (x).

We say Fn
Γ−→ F if Fn

Γ−→ F at x for all x ∈ X.

Set Qr = [−r/2, r/2]d.

Recall we assume f (bond energy) and g (cell energy) satisfy growth
bounds of order p > 1. We now state a

Homogenization result (Alicandro, Cicalese and Gloria 2011)
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FDL (u) =
∑

x∼y,[x,y]⊂D

|y − x|df
(
u(y)− u(x)

|y − x|

)
+

∑
T∈T (L):T⊂D

|T |g(∇uL|T )

Suppose 0 < a < b and L is stationary, ergodic, general and a.s. in Aa,b.
Then a.s. as ε ↓ 0 we have FDεL

Γ−→ FDhom on Lp(D,Rn), where

FDhom(u) =

{ ∫
DWhom(∇u(x))dx, u ∈W 1,p(D,Rn).

+∞ otherwise

Whom(Λ) = lim
r→∞

r−d inf{FQrL (u) : u(x) = Λ · x on Qr \Qr−2b} (1)

Idea - divide D into cubes of side δ = δ(ε) with ε� δ � 1. Take uε = u
(approx. affine) near boundary of each cube. Let uε optimise the energy
inside each cube, subject to this constraint. Discuss (1) later.
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Existence of a stationary ergodic general L in Aa,b: Random parking.

Let ρ > 0. Let X1, X2, . . . be independent uniform random vectors in D.

Xn is accepted, unless ∃m ≤ n with Xm accepted and |Xn −Xm| ≤ ρ.

Let ξD = {accepted Xi}. (random parking process on D). It has the
a-hardcore and b-no-empty space properties on D for any a < ρ < b.

ξQr has weak limit ξ on Rd (stationary ergodic, general, in Aa,b).

ξ obtained from parking protocol for homogeneous Poisson point process
{(Xi, Ti)} in Rd × R+, where Ti is arrival time of Xi.

Parking protocol on this Poisson process well-defined by a first passage
percolation argument (Penrose 2001).
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Subadditivity

Suppose E(S,R) is a real-valued energy functional defined for all locally
finite S ⊂ Rd, and rectangles R, e.g. p-weighted travelling salesman cost

ETSP,p(S,R) = min{
n∑
i=1

|xi − xi−1|p : S ∩R = {x1, . . . , xn}, x0 = xn}

Known since BHH (1959) that there exists β such that as r →∞,

r−dETSP,1(H, Qr)→ β

where H is a homogeneous PPP on Rd.
We shall describe generic properties of E guaranteeing such convergence
for ETSP,p and many other examples, e.g. the minimal matching and
minimal spanning tree. (cf. Redmond and Yukich (1994), Yukich (1999)).
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Properties of ETSP,p(·) (and other choices of E(·) with ‘order’ p)

• Translation invariant: E(x+ S, x+R) = E(S,R), all x ∈ Rd, all S,R.

• Almost subadditive: E(S ∪ T,R) ≤ E(S,R) + E(T,R) + C(diamR)p.

• Smooth: |E(T,R)− E(S,R)| ≤ C(diamR)p(card((S4T ) ∩R))1−p/d.

• There is an approximate energy functional Ẽ(S,R) defined for all
rectangles R ⊂ Rd with Ẽ translation invariant, and

• Superadditive: if R0 = ∪ni=1Ri (rectangles) then

Ẽ(S,R) ≥
m∑
i=1

Ẽ(S,Ri)

• Close to E of order p: r−p|Ẽ(S,Qr)− E(S,Qr)| = o(card(S ∩Qr)).

For ETSP,p take Ẽ(S,R) to be the TSP cost with ‘free travel’ outside R.
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General LLNs for E

Suppose p ≥ 1 and E is TI, almost subadditive, and smooth of order p.
Suppose there exists Ẽ(S,R) which is TI, superadditive and close to E of
order p. Then (Redmond/Yukich) there is a constant such that

r−dE(H, Qr)→ γ a.s.

Moreover (Gloria-P. 2012), if L is stationary and ergodic with L ∈ Aa,∞
for some a > 0, then there exists γ ∈ R such that

r−dE(L, Qr)→ γ a.s.

Proof via multiparameter subadditive ergodic theorem (Akcoglu/Krengel).

Example: take E(S,R) = inf{FRS (u) : u(x) = Λx near ∂R}.
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Back to random parking

Results described so far show that if ξ is random parking on Rd then for E
satisfying hypotheses of subadditivity etc., we have for some γ that

r−dE(ξ,Qr)→ γ

e.g. with E the p-weighted TSP on ξ ∩QR
or with E the minmum of FQrξ (u) given Λ-boundary conditions.

Would like to replace ξ by ξQr in the above results, since (i) any
simulation studies would be on a finite region (ii) no physical reason for
process generating ξ on D = Qr to depend on input from outside D
Gloria-P. (2012): can indeed replace ξ by ξQr in the above.

Also: can extend the earlier homogenization result:
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FDL (u) =
∑

x∼y,[x,y]⊂D

|y − x|df
(
u(y)− u(x)

|y − x|

)
+

∑
T∈T (L):T⊂D

|T |g(∇uL|T )

Suppose ξDρ is the random parking process in D with hard-core parameter

ρ. Then for ρ > 0, as ε ↓ 0 we have FD
ξDερ

Γ−→ FDhom on Lp(D,Rn), where

FDhom(u) =

{ ∫
DWhom(∇u(x))dx, u ∈W 1,p(D,Rn).

+∞ otherwise

Whom(Λ) = lim
r→∞

r−d inf{FQr
ξQr

(u) : u(x) = Λ · x on Qr \Qr−2b}. (2)

Proof relies heavily on exponential stabilization of random parking
(Schreiber, P. and Yukich 2007)
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Exponential stabilization

Let H be a homogeneous Poisson process in Rd × R+.
For x ∈ Zd, let Qx = x+ [0, 1]d.
Let ξx = ξ(H)∩ (Qx × [0,∞)), where ξ(·) is the set of accepted points for
the random parking process with hard-core parameter 1.

Exponential stabilization says that for each x there exists Rx such that:

• ξx is unaffected by changes to H outside BRx(x)× [0,∞).
• P [Rx > t] ≤ e−αt, some α > 0
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