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Random sequential adsorption in Z2

Initially empty n× n chessboard

Particles arrive at the sites in random order.

Incoming particle at site x, if accepted, causes neighbouring sites to
become permanently blocked.

Incoming particle at blocked site is rejected.

End up with random stable set of occupied sites

Weak limit as n→∞, a random stable set in Z2.

Equivalent: iid exp(λ) arrival times at all x ∈ Z2.
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Figure: Squares containing a dot are occupied sites. Squares with an inscribed
square in are black sites; the other squares are white sites
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Random sequential adsorption (RSA) is a model for irreversible particle
deposition onto an initially clean surface.

Our lattice version of RSA generates a random maximal stable set in Z2.

We consider percolation properties of this set.
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Percolation for random sequential adsorption

Given RSA on infinite chessboard, partition sites (squares) into:

Black phase: dark (even) occupied sites and light (odd) blocked sites

White phase: light occupied sites and dark blocked sites

Does the black phase percolate, i.e. include an infinite component a.s.?

Might expect not (cf indep. site percolation).

Considering occupied even sites, maybe not so clear (lattice with
diagonals).

In fact, first intuition correct...
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Biased RSA

Now assume arrivals are at rate 1 for light sites and rate λ for dark sites.

Let λc be the infimum of those λ such that the black phase percolates a.s.

THEOREM (Penrose and Rosoman 2011). we have

1 < λc < 10

So in particular, when λ = 1 the black phase does not percolate, a.s. We’ll
sketch a proof of this weaker result.
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Enhancement and duality

Let us add diagonal (diamond) sites. The octagons correspond to the
original squares of the chessboard.

Perform RSA as before on the octagons. Independently colour each of the
diamonds black with probability p

If λ = 1 and p = 1/2 the model is self-dual and the probabilty of a
horizontal black crossing of an s× s grid is 1/2.
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The Bollobás-Riordan RSW lemma

Let f(ρ, s) be the probabilty of a white crossing of a ρs× s rectangle.

If lim infs→∞ f(1, s) > 0 then lim sups→∞ f(ρ, s) > 0.

Bollobás and Riordan (2006) prove this for a different model but can
adapt to the present setting. Need Harris-FKG inequality which is known
here (Penrose and Sudbury 2005), and rapidly decaying correlations.

Know lim infs→∞ f(1, s) = 1/2, so lim sups→∞ f(ρ, s) > 0.
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Proof of non-percolation

Consider a square annulus An round the origin made up of four
overlapping 3n× n blocks.

Using Harris-FKG again, can choose infinite sequence (n(k), k ≥ 1) so
that the probabilty of a white path round each annulus An(k) is bounded
away from zero.

Using exponential decay can also ensure successive annuli are almost
independent.

Upshot: can arrange so there is a white circuit in one of the annuli, almost
surely.

Hence, no infinite black path from the origin, almost surely. This is true
for p = 1/2 so even more true for p = 0.
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Idea behind proving λc > 1.

Increasing λ (rate on dark sites) equivalent to decreasing µ (rate on light
sites).

Let θn(µ, p) be the probability of white crossing of n× n square, with rate
µ on light sites, 1 on dark sites, and enhancement parameter p.

By self-duality, θn(µ = 1, p = 1/2) = 1/2.

Aim to reduce µ slightly below 1 while increasing p above 1/2, and still
have θn(µ, p) bounded away from zero. Can then repeat previous
argument.

Can use Russo’s formula and enhancement to show for some fixed C that

∂θn
∂µ
≤ C∂θn

∂p

Mathew Penrose (Bath), Bedlewo May 2011



Idea behind proving λc > 1.

Increasing λ (rate on dark sites) equivalent to decreasing µ (rate on light
sites).

Let θn(µ, p) be the probability of white crossing of n× n square, with rate
µ on light sites, 1 on dark sites, and enhancement parameter p.

By self-duality, θn(µ = 1, p = 1/2) = 1/2.

Aim to reduce µ slightly below 1 while increasing p above 1/2, and still
have θn(µ, p) bounded away from zero. Can then repeat previous
argument.

Can use Russo’s formula and enhancement to show for some fixed C that

∂θn
∂µ
≤ C∂θn

∂p

Mathew Penrose (Bath), Bedlewo May 2011



Idea behind proving λc > 1.

Increasing λ (rate on dark sites) equivalent to decreasing µ (rate on light
sites).

Let θn(µ, p) be the probability of white crossing of n× n square, with rate
µ on light sites, 1 on dark sites, and enhancement parameter p.

By self-duality, θn(µ = 1, p = 1/2) = 1/2.

Aim to reduce µ slightly below 1 while increasing p above 1/2, and still
have θn(µ, p) bounded away from zero. Can then repeat previous
argument.

Can use Russo’s formula and enhancement to show for some fixed C that

∂θn
∂µ
≤ C∂θn

∂p

Mathew Penrose (Bath), Bedlewo May 2011



Idea behind proving λc > 1.

Increasing λ (rate on dark sites) equivalent to decreasing µ (rate on light
sites).

Let θn(µ, p) be the probability of white crossing of n× n square, with rate
µ on light sites, 1 on dark sites, and enhancement parameter p.

By self-duality, θn(µ = 1, p = 1/2) = 1/2.

Aim to reduce µ slightly below 1 while increasing p above 1/2, and still
have θn(µ, p) bounded away from zero. Can then repeat previous
argument.

Can use Russo’s formula and enhancement to show for some fixed C that

∂θn
∂µ
≤ C∂θn

∂p

Mathew Penrose (Bath), Bedlewo May 2011



Idea behind proving λc > 1.

Increasing λ (rate on dark sites) equivalent to decreasing µ (rate on light
sites).

Let θn(µ, p) be the probability of white crossing of n× n square, with rate
µ on light sites, 1 on dark sites, and enhancement parameter p.

By self-duality, θn(µ = 1, p = 1/2) = 1/2.

Aim to reduce µ slightly below 1 while increasing p above 1/2, and still
have θn(µ, p) bounded away from zero. Can then repeat previous
argument.

Can use Russo’s formula and enhancement to show for some fixed C that

∂θn
∂µ
≤ C∂θn

∂p

Mathew Penrose (Bath), Bedlewo May 2011



The Lilypond Model: a continuum hard-core system

Suppose ϕ ⊂ R2 is finite with at least 2 elements.

Grow disks at unit rate from each point, starting all at once.

Each disk stops growing when it hits another disk.

Let ρ(x) = ρ(x, ϕ) be the resulting radii for x ∈ ϕ.

The resulting system of disks (grains) is called the Lilypond model on ϕ.
It is the maximin system satisfying the hard-core property

ρ(x) + ρ(y) ≤ |x− y|, x, y ∈ ϕ.
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Given countable ϕ ⊂ Rd suppose ρ := (ρ(x), x ∈ ϕ) is a set of radii.

We say x, y ∈ ϕ are grain-neighbours if ρ(x) + ρ(y) = |x− y|.

If also ρ(y) ≤ ρ(x), say y is a smaller grain-neighbour of x.

We say ρ has the smaller grain-neighbour property if every x ∈ ϕ has a
smaller grain-neighbour.

For locally finite ϕ ⊂ Rd, the lilypond model is the unique system
ρ(x), x ∈ ϕ satisfying the hard-core and smaller grain-neighbour properties
(Heveling/Last 2006). Set Br(x) := {y : |y − x| ≤ r} and

Z(ϕ) = ∪x∈ϕBρ(x,ϕ)(x).

For x ∈ ϕ, let C(x, ϕ) be the component of Z(ϕ) containing x.
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Let Φ be a homogeneous (i.e. stationary) Poisison process in Rd.

It is known that Z(Φ) does not percolate (i.e. has no infinite component,
a.s.). (Häggström and Meester 1996).

Analysis difficult because of complicated dependence; inserting a point
into ϕ may affect several radii by a chain reaction.

THEOREM (Last and Penrose 2010). There exists δ > 0 such that Zδ(Φ)
does not percolate, where

Zδ(ϕ) := ∪x∈ϕBρ(x,ϕ)+δ(x).
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STABILIZATION (Main tool for proofs)

Let ϕ0 = ϕ ∪ {0}. We can define R(ϕ) ∈ [0,∞] such that:

(i) if R(ϕ) <∞ and ψ ∩BR(ϕ)(0) = ϕ ∩BR(ϕ)(0) , then

• R(ψ) = R(ϕ) (stopping time property).

• ρ(0, ϕ0) = ρ(0, ψ0). (i.e. ϕ0 ∩BR(ϕ)(0) determines ρ(0, ϕ)).

(ii) There are constants c, C such that P [R(Φ) > r] ≤ C exp(−crd/(d+1)),
∀r > 0.
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HOW TO DEFINE R(ϕ) (cf. HM 1996, Daley and Last 2005).

Let DC(ϕ) (the set of descending chains in ϕ) be the set of sequences
(x0, . . . , xn) of distinct elements of ϕ such that (|xi − xi−1|, 1 ≤ i ≤ n) is
nonincreasing.
For x ∈ ϕ let N(x, ϕ) = min{|y − x| : y ∈ ϕ \ {x}}. Set

R(ϕ) := sup{|xn|+ |xn − xn−1| :

(0, . . . , xn) ∈ DC(ϕ0), |x1| ≤ 2N(0, ϕ0)}.

Clearly ρ(0, ϕ0) < 2N(0, ϕ0), and ρ(0, ϕ0) = ρ(0, ϕ0 ∩BR(ϕ)(0)) because:

If x1 affects 0 directly, then |x1| ≤ 2N(0, ϕ0).
If x2 affects x1 before x1 affects x0 then |x2 − x1| ≤ |x1|, etc.
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TAIL BEHAVIOUR OF R(Φ).

If R(Φ) is large then either N(0,Φ0) is large or for some descending chain
from 0, there are a lot of links ...
Let r > 0. The probability there exists (0, x1, . . . , xn) ∈ DC(Φ0) with
|x1| ≤ r, is bounded by the expected number of such n-tuples. This is
equal to∫

Rd

· · ·
∫

Rd

1{r > |x1| > |x2 − x1| · · · > |xn − xn−1|}dx1 . . . dxn

=
∫

Rd

· · ·
∫

Rd

1{r > |x1| > |y2| · · · > |yn|}dx1dy2 . . . dyn

=
(πdrd)n

n!
Tail behavour of R(Φ) comes from decay of n!−1.
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Moreover we can define a radius R̃ = R̃(ϕ) with similar tail behaviour for
R̃(Φ) and with stopping time property and also:

(i) No influence from inside BR̃/2(0) on radii outside BR̃(0), or vice versa.

(ii) No component of Z(ϕ) intersects both with BR̃/2(0) and with

Rd \BR̃(0).
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IDEA BEHIND DEFINITION OF R̃(ϕ)
Suppose each x ∈ ϕ each vertex has a unique smaller grain-neighbour (Φ
has this property a.s. (Daley and Last 2005)).
Make a directed graph on ϕ with (x, y) an edge iff y a smaller grain
neighbour of x. Every vertex will have out-degree 1.
If there is a path in the undirected graph across an annulus
B4r(0) \B2r(0), then:
either there is a DC from outside B4r(0) to inside B3r(0)
or there is a DC from inside B2r(0) to outside B3r(0).
Take R̃(ϕ) to be 4 times the smallest r such that neither of these
possibilities happens.
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Sketch proof that Zδ(Φ) does not percolate, some δ > 0.

Let K > 0, δ > 0 (choose later). Divide Rd into cubes Qz of side K,
indexed by z ∈ Zd. Qz centred at Kz.

Set Yz = 0 iff ρ(x,Φ) ≤ K and R̃(−x+ Φ) ≤ K for all x ∈ Φ ∩Qz and
ρ(x) + ρ(y) + 2δ < |x− y| for all x, y ∈ ∪z′:‖z′−z‖∞=1Qz′ that are not
grain-neighbours. Otherwise Yz = 1.

(Yz, z ∈ Zd) is finite range dependent site percolation, with P[Yz = 1]
arbitrarily small by choice of K, δ.

If there is an infinite path in Zδ(Φ), there must be an infinite path in the
(Yz) process.
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OTHER RESULTS (Last and Penrose 2010)

(i) There are constants c, C such that

P[Diam(C(0,Φ0)) ≥ r] ≤ C exp(−crd/(d+1)).

(iii) Let Φn be a Poisson process of intensity n on [0, n1/d]d. Then
Vol(Z(Φn)) satisfies a Central Limit Theorem as n→∞, and so does the
number of components of Φn. We also have de-Poissonized CLTs.
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