
Percolation and limit theory for the Poisson

lilypond model

Mathew D. Penrose

Joint work with Günter Last (KIT, Karlsruhe)

Problab seminar, Bath

20 October 2010

1



THE LILYPOND MODEL.

Suppose ϕ ⊂ R2 is finite with at least 2 elements.

Grow disks at unit rate from each point, starting all at once.

Each disk stops growing when it hits another disk.

Let ρ(x) = ρ(x, ϕ) be the resulting radii for x ∈ ϕ.

The resulting system of disks (grains) is called the Lilypond model

on ϕ. It is the maximin system satisfying the hard-core property

ρ(x) + ρ(y) ≤ |x− y|, x, y ∈ ϕ.
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Given countable ϕ ⊂ Rd suppose ρ := (ρ(x), x ∈ ϕ) is a set of radii.

We say x, y ∈ ϕ are grain-neighbours if ρ(x) + ρ(y) = |x− y|.

If also ρ(y) ≤ ρ(x), say y is a smaller grain-neighbour of x.

We say ρ has the smaller grain-neighbour property if every x ∈ ϕ has

a smaller grain-neighbour.

For locally finite ϕ ⊂ Rd, the lilypond model is the unique system

ρ(x), x ∈ ϕ satisfying the hard-core and smaller grain-neighbour

properties (Heveling/Last 2006). Set Br(x) := {y : |y − x| ≤ r} and

Z(ϕ) = ∪x∈ϕBρ(x,ϕ)(x).

For x ∈ ϕ, let C(x, ϕ) be the component of Z(ϕ) containing x.
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Let Φ be a homogeneous (i.e. stationary) Poisison process in Rd. No

precise formulae are known for quantities of interest such as

P[ρ(0,Φ0) ≤ t]; E[vol(Z(Φ) ∩ [0, 1]d)],

where ϕx := ϕ ∪ {x}.

It is known that Z(Φ) does not percolate (i.e. has no infinite

component, a.s.). (Häggström and Meester 1996). But little known

about

P[Diam(C(0,Φ0)) ≤ t], P[♯(C(0,Φ0)) ≤ t], P[vol(C(0,Φ0)) ≤ t].

Analysis difficult because of complicated dependence; inserting a

point into ϕ may affect several radii by a chain reaction.
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NEW RESULTS (Last and Penrose 2010)

(i) There are constants c, C such that

P[Diam(C(0,Φ0)) ≥ r] ≤ C exp(−crd/(d+1)).

(ii) There exists δ > 0 such that Zδ(Φ) does not percolate, where

Zδ(ϕ) := ∪x∈ϕBρ(x,ϕ)+δ(x).

(iii) Let Φn be a Poisson process of intensity 1 on [0, n1/d]d. Then

vol(Z(Φn)) satisfies a Central Limit Theorem as n→ ∞, and so does

the number of components of Φn. We also have de-Poissonized CLTs.
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STABILIZATION (Main tool for proofs). Let ϕ0 = ϕ ∪ {0}. We

can define R(ϕ) ∈ [0,∞] such that:

(i) if R(ϕ) <∞ and ψ ∩BR(ϕ)(0) = ϕ ∩BR(ϕ)(0) , then

• R(ψ) = R(ϕ) (stopping time property).

• ρ(0, ϕ0) = ρ(0, ψ0). (i.e. ϕ0 ∩BR(ϕ)(0) determines ρ(0, ϕ)).

(ii) There are constants c, C such that

P [R(Φ) > r] ≤ C exp(−crd/(d+1)), ∀r > 0.
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HOW TO DEFINE R(ϕ) (cf. HM 1996, Daley and Last 2005).

Let DC(ϕ) (the set of descending chains in ϕ) be the set of sequences

(x0, . . . , xn) of distinct elements of ϕ such that

(|xi − xi−1|, 1 ≤ i ≤ n) is nonincreasing.

For x ∈ ϕ let N(x, ϕ) = min{|y − x| : y ∈ ϕ \ {x}}. Set

R(ϕ) := sup{|xn| + |xn − xn−1| :

(0, . . . , xn) ∈ DC(ϕ0), |x1| ≤ 2N(0, ϕ0)}.

Clearly ρ(0, ϕ0) < N(0, ϕ0), and ρ(0, ϕ0) = ρ(0, ϕ0 ∩BR(ϕ)(0))

because:

If x1 affects 0 directly, then |x1| ≤ 2N(0, ϕ0).

If x2 affects x1 before x1 affects x0 then |x2 − x1| ≤ |x1|, etc.
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TAIL BEHAVIOUR OF R(Φ).

If R(Φ) is large then either N(0,Φ0) is large or for some descending

chain from 0, there are a lot of links ...

Let r > 0. The probability there exists (0, x1, . . . , xn) ∈ DC(Φ0) with

|x1| ≤ r, is bounded by the expected number of such n-tuples. This is

equal to∫
Rd

· · ·

∫
Rd

1{r > |x1| > |x2 − x1| > · · · > |xn − xn−1|}dx1 . . . dxn

=

∫
Rd

· · ·

∫
Rd

1{r > |x1| > |y2| > · · · > |yn|}dx1dy2 . . . dyn

=
(πdr

d)n

n!

Tail behavour of R(Φ) comes from decay of n!−1.
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Using tail behaviour of R, can get a CLT for vol(Z(Φn)) using

general results (e.g. in Penrose 2007, Penrose and Yukich 2001).

Idea: Z(Φn) is sum of weakly dependent contributions from different

regions of space.

In fact we can define a radius R̃ = R̃(ϕ) with similar tail behaviour

for R̃(Φ) and with stopping time property and also:

(i) No influence from inside BR̃/2(0) on radii outside BR̃(0), or vice

versa. [useful to prove de-Poissonized CLTs]

(ii) No component of Z(ϕ) intersects both with BR̃/2(0) and with

Rd \BR̃(0). [useful to prove results concerning components]
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IDEA BEHIND DEFINITION OF R̃(ϕ)

Suppose each x ∈ ϕ each vertex has a unique smaller grain-neighbour

(Φ has this property a.s. (Daley and Last 2005)).

Make a directed graph on ϕ with (x, y) an edge iff y a smaller grain

neighbour of x. Every vertex will have out-degree 1.

If there is a path in the undirected graph across an annulus

B4r(0) \B2r(0), then:

either there is a DC from outside B4r(0) to inside B3r(0)

or there is a DC from inside B2r(0) to outside B3r(0).

Take R̃(ϕ) to be 4 times the smallest r such that neither of these

possibilities happens.
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Sketch proof that Zδ(Φ) does not percolate, some δ > 0.

Let K > 0, δ > 0 (choose later). Divide Rd into cubes Qz of side K,

indexed by z ∈ Zd.

Set Yz = 0 iff ρ(x,Φ) ≤ K and R̃(−x+ Φ) ≤ K for all x ∈ Φ ∩Qz

and ρ(x) + ρ(y) + 2δ < |x− y| for all x, y ∈ ∪z′:‖z′−z‖∞=1Qz′ that are

not grain-neighbours.

Otherwise Yz = 1.

(Yz, z ∈ Zd) is finite range dependent site percolation, with P[Yz = 1]

arbitrarily small by choice of K, δ.

If there is an infinite path in Zδ(Φ), there must be an infinite path in

the (Yz) process.
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