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THE LILYPOND MODEL.

Suppose ¢ C R? is finite with at least 2 elements.

Grow disks at unit rate from each point, starting all at once.

Each disk stops growing when it hits another disk.

Let p(x) = p(z, ¢) be the resulting radii for z € .

The resulting system of disks (grains) is called the Lilypond model

on . It is the maximin system satisfying the hard-core property

p(x)+ply) <lz—y|, z,ycep.




Given countable ¢ C RY suppose p := (p(z),r € ¢) is a set of radii.
We say z,y € ¢ are grain-neighbours if p(x) + p(y) = |z — y|.
If also p(y) < p(x), say y is a smaller grain-neighbour of x.

We say p has the smaller grain-neighbour property if every x € ¢ has
a smaller grain-neighbour.

For locally finite ¢ C R, the lilypond model is the unique system
p(x), x € v satisfying the hard-core and smaller grain-neighbour
properties (Heveling/Last 2006). Set B, (z) :={y: |y — x| < r} and

Z(SD) — UngoB,o(x,go)( )

For x € ¢, let C(x, p) be the component of Z(y) containing x.




Let ® be a homogeneous (i.e. stationary) Poisison process in R%. No

precise formulae are known for quantities of interest such as

Plp(0,2°) < t];  E[vol(Z(2) N[0, 1]9)],

where ¢* := o U {x}.

It is known that Z(®) does not percolate (i.e. has no infinite
component, a.s.). (Haggstrom and Meester 1996). But little known
about

P[Diam(C(0, ®%)) < t], P[4(C(0,®")) < t], P[vol(C(0,d")) < ¢].

Analysis difficult because of complicated dependence; inserting a

point into ¢ may affect several radii by a chain reaction.




NEW RESULTS (Last and Penrose 2010)

(i) There are constants ¢, C' such that
P[Diam(C(0, ®°)) > r] < C exp(—cr®/ (d+1),

(ii) There exists § > 0 such that Z°(®) does not percolate, where

Z(S(SD) = UngOBp(x,go)—l—(S( )

(iii) Let ®,, be a Poisson process of intensity 1 on [0,n'/4]¢. Then
vol(Z(®,,)) satisfies a Central Limit Theorem as n — oo, and so does
the number of components of ®,,. We also have de-Poissonized CLTs’s.




STABILIZATION (Main tool for proofs). Let ¢’ = o U {0}. We
can define R(y) € |0, 00| such that:

(i) if R(p) < oo and ¥ N BR(@)(O) = N BR(go) (0) , then

e R(v) = R(p) (stopping time property).
e p(0,¢%) = p(0,¢°). (i.e. ¢” N Bpg(,)(0) determines p(0, ¢)).

(ii) There are constants ¢, C' such that
P[R(®) > r] < Cexp(—crd/(d+1)) wr > 0.




HOW TO DEFINE R(p) (cf. HM 1996, Daley and Last 2005).

Let DC(¢p) (the set of descending chains in @) be the set of sequences
(xg,...,xy) of distinct elements of ¢ such that

(|lx; — z;—1],1 < i < n) is nonincreasing.

For x € p let N(xz, ) = min{ly — x| : y € o\ {x}}. Set
R(p) :=sup{|xp| + |n — 1] :

(0,...,2,) € DC(%), |x1| < 2N(0, ")},

Clearly p(0, ") < N(0,¢), and p(0, ") = p(0, 9" N Bp(,)(0))
because:

If x; affects 0 directly, then |z1]| < 2N(0, ©Y).

If x5 affects x1 before z1 affects xy then |xo — x1| < |x1], ete.




TAIL BEHAVIOUR OF R(®).
If R(®) is large then either N (0, ®°) is large or for some descending

chain from 0, there are a lot of links ...

Let r > 0. The probability there exists (0, x1,...,z,) € DC(®") with
|z1| < r, is bounded by the expected number of such n-tuples. This is

equal to

/ / 1{7“>‘5131|>|£U2—£I31‘>"'>’$n_$n—1|}dx1---dxn
R4 R4

:/ / H{r > |z1] > |y2| > -+ > |yn|}dz1dys . . . dyy
Rd Rd

Tail behavour of R(®) comes from decay of n!™!.




Using tail behaviour of R, can get a CLT for vol(Z(®,,)) using
general results (e.g. in Penrose 2007, Penrose and Yukich 2001).

Idea: Z(®,,) is sum of weakly dependent contributions from different

regions of space.

In fact we can define a radius R = R(y) with similar tail behaviour

for R(®) and with stopping time property and also:

(i) No influence from inside By ,(0) on radii outside Bz(0), or vice
versa. [useful to prove de-Poissonized CLTSs]

(ii) No component of Z(yp) intersects both with Bg,(0) and with

R?\ B3(0). [useful to prove results concerning components]




IDEA BEHIND DEFINITION OF R(gp)

Suppose each x € ¢ each vertex has a unique smaller grain-neighbour
(® has this property a.s. (Daley and Last 2005)).

Make a directed graph on ¢ with (x,y) an edge iff y a smaller grain

neighbour of x. Every vertex will have out-degree 1.

If there is a path in the undirected graph across an annulus
Byr(0) \ B2,(0), then:

either there is a DC from outside By,-(0) to inside Bs,.(0)
or there is a DC from inside Bs,(0) to outside Bs,.(0).

Take R(p) to be 4 times the smallest 7 such that neither of these
possibilities happens.
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Sketch proof that Z°(®) does not percolate, some § > 0.

Let K > 0,8 > 0 (choose later). Divide R? into cubes @, of side K,
indexed by z € Z¢.

Set YV, =0 iff p(z,®) < K and R(—z + ®) < K forallz € N Q.
and p(x) + p(y) +20 < |xr —y| for all z,y € Uz —z) . =1Q~ that are

not grain-neighbours.
Otherwise Y, = 1.

(Y., z € Z%) is finite range dependent site percolation, with P[Y, = 1]
arbitrarily small by choice of K, 9.

If there is an infinite path in Z°(®), there must be an infinite path in
the (Y,) process.

11



References

[1] D.J. Daley, G. Last (2005). ‘Descending chains, lilypond growth
... Adv. in Appl. Probab. 37, 604-628.

2] O. Haggstrom, R. Meester (1996). ‘Nearest neighbor and hard
sphere models ...” Random Struct. Algorithms 9, 295-315.

3] M. Heveling, G. Last (2006). ‘Existence, uniqueness and
algorithmic computation of general lilypond systems.” Random
Struct. Algorithms 29, 338-350.

[4] M. Penrose (2007) ‘Gaussian limits for random geometric
measures.” Flec. J. Probab. 12, 989-1035.

[5] M.D. Penrose, J.E. Yukich (2001). ‘Central limit theorems for
some graphs ...” Ann. Appl. Probab. 11, 1005-1041.

12



