Percolation and limit theory for the Poisson lilypond model

Mathew D. Penrose

Joint work with Günter Last (KIT, Karlsruhe)

Problab seminar, Bath 20 October 2010

THE LILYPOND MODEL.

Suppose $\varphi \subset \mathbf{R}^2$ is finite with at least 2 elements.

Grow disks at unit rate from each point, starting all at once.

Each disk stops growing when it hits another disk.

Let $\rho(x) = \rho(x, \varphi)$ be the resulting radii for $x \in \varphi$.

The resulting system of disks (grains) is called the **Lilypond model** on φ . It is the maximin system satisfying the *hard-core* property

 $\rho(x) + \rho(y) \le |x - y|, \quad x, y \in \varphi.$

Given countable $\varphi \subset \mathbf{R}^d$ suppose $\rho := (\rho(x), x \in \varphi)$ is a set of radii. We say $x, y \in \varphi$ are grain-neighbours if $\rho(x) + \rho(y) = |x - y|$. If also $\rho(y) \leq \rho(x)$, say y is a smaller grain-neighbour of x. We say ρ has the smaller grain-neighbour property if every $x \in \varphi$ has a smaller grain-neighbour.

For locally finite $\varphi \subset \mathbf{R}^d$, the lilypond model is the **unique** system $\rho(x), x \in \varphi$ satisfying the hard-core and smaller grain-neighbour properties (Heveling/Last 2006). Set $B_r(x) := \{y : |y - x| \leq r\}$ and

 $Z(\varphi) = \cup_{x \in \varphi} B_{\rho(x,\varphi)}(x).$

For $x \in \varphi$, let $\mathcal{C}(x, \varphi)$ be the component of $Z(\varphi)$ containing x.

Let Φ be a homogeneous (i.e. stationary) Poisson process in \mathbb{R}^d . No precise formulae are known for quantities of interest such as

 $\mathbb{P}[\rho(0,\Phi^0) \le t]; \quad \mathbb{E}[\operatorname{vol}(Z(\Phi) \cap [0,1]^d)],$

where $\varphi^x := \varphi \cup \{x\}.$

It is known that $Z(\Phi)$ does not percolate (i.e. has no infinite component, a.s.). (Häggström and Meester 1996). But little known about

 $\mathbb{P}[\operatorname{Diam}(\mathcal{C}(0,\Phi^0)) \le t], \quad \mathbb{P}[\sharp(\mathcal{C}(0,\Phi^0)) \le t], \quad \mathbb{P}[\operatorname{vol}(\mathcal{C}(0,\Phi^0)) \le t].$

Analysis difficult because of complicated dependence; inserting a point into φ may affect several radii by a chain reaction.

NEW RESULTS (Last and Penrose 2010)

(i) There are constants c, C such that

 $\mathbb{P}[\operatorname{Diam}(\mathcal{C}(0,\Phi^0)) \ge r] \le C \exp(-cr^{d/(d+1)}).$

(ii) There exists $\delta > 0$ such that $Z^{\delta}(\Phi)$ does not percolate, where

$$Z^{\delta}(\varphi) := \bigcup_{x \in \varphi} B_{\rho(x,\varphi) + \delta}(x).$$

(iii) Let Φ_n be a Poisson process of intensity 1 on $[0, n^{1/d}]^d$. Then $\operatorname{vol}(Z(\Phi_n))$ satisfies a Central Limit Theorem as $n \to \infty$, and so does the number of components of Φ_n . We also have de-Poissonized CLTs.

STABILIZATION (Main tool for proofs). Let $\varphi^0 = \varphi \cup \{0\}$. We can define $R(\varphi) \in [0, \infty]$ such that:

(i) if $R(\varphi) < \infty$ and $\psi \cap B_{R(\varphi)}(0) = \varphi \cap B_{R(\varphi)}(0)$, then

- $R(\psi) = R(\varphi)$ (stopping time property).
- $\rho(0,\varphi^0) = \rho(0,\psi^0)$. (i.e. $\varphi^0 \cap B_{R(\varphi)}(0)$ determines $\rho(0,\varphi)$).

(ii) There are constants c, C such that $P[R(\Phi) > r] \leq C \exp(-cr^{d/(d+1)}), \forall r > 0.$ HOW TO DEFINE $R(\varphi)$ (cf. HM 1996, Daley and Last 2005).

Let $DC(\varphi)$ (the set of *descending chains* in φ) be the set of sequences (x_0, \ldots, x_n) of distinct elements of φ such that

 $(|x_i - x_{i-1}|, 1 \le i \le n)$ is nonincreasing.

For $x \in \varphi$ let $N(x, \varphi) = \min\{|y - x| : y \in \varphi \setminus \{x\}\}$. Set

$$R(\varphi) := \sup\{|x_n| + |x_n - x_{n-1}| :$$

$$(0,\ldots,x_n) \in DC(\varphi^0), |x_1| \le 2N(0,\varphi^0)\}.$$

Clearly $\rho(0,\varphi^0) < N(0,\varphi^0)$, and $\rho(0,\varphi^0) = \rho(0,\varphi^0 \cap B_{R(\varphi)}(0))$ because:

If x_1 affects 0 directly, then $|x_1| \leq 2N(0, \varphi^0)$.

If x_2 affects x_1 before x_1 affects x_0 then $|x_2 - x_1| \le |x_1|$, etc.

TAIL BEHAVIOUR OF $R(\Phi)$.

If $R(\Phi)$ is large then either $N(0, \Phi^0)$ is large or for some descending chain from 0, there are a lot of links ...

Let r > 0. The probability there exists $(0, x_1, \ldots, x_n) \in DC(\Phi^0)$ with $|x_1| \leq r$, is bounded by the expected number of such *n*-tuples. This is equal to

$$\int_{\mathbf{R}^{d}} \cdots \int_{\mathbf{R}^{d}} \mathbf{1}\{r > |x_{1}| > |x_{2} - x_{1}| > \cdots > |x_{n} - x_{n-1}|\} dx_{1} \dots dx_{n}$$
$$= \int_{\mathbf{R}^{d}} \cdots \int_{\mathbf{R}^{d}} \mathbf{1}\{r > |x_{1}| > |y_{2}| > \cdots > |y_{n}|\} dx_{1} dy_{2} \dots dy_{n}$$
$$= \frac{(\pi_{d} r^{d})^{n}}{n!}$$

Tail behavour of $R(\Phi)$ comes from decay of $n!^{-1}$.

Using tail behaviour of R, can get a CLT for $\operatorname{vol}(Z(\Phi_n))$ using general results (e.g. in Penrose 2007, Penrose and Yukich 2001). Idea: $Z(\Phi_n)$ is sum of weakly dependent contributions from different

regions of space.

In fact we can define a radius $\tilde{R} = \tilde{R}(\varphi)$ with similar tail behaviour for $\tilde{R}(\Phi)$ and with stopping time property and also:

(i) No influence from inside $B_{\tilde{R}/2}(0)$ on radii outside $B_{\tilde{R}}(0)$, or vice versa. [useful to prove de-Poissonized CLTs]

(ii) No component of $Z(\varphi)$ intersects both with $B_{\tilde{R}/2}(0)$ and with $\mathbf{R}^d \setminus B_{\tilde{R}}(0)$. [useful to prove results concerning components]

IDEA BEHIND DEFINITION OF $\tilde{R}(\varphi)$

Suppose each $x \in \varphi$ each vertex has a *unique* smaller grain-neighbour (Φ has this property a.s. (Daley and Last 2005)).

Make a directed graph on φ with (x, y) an edge iff y a smaller grain neighbour of x. Every vertex will have out-degree 1.

If there is a path in the undirected graph across an annulus $B_{4r}(0) \setminus B_{2r}(0)$, then:

either there is a DC from outside $B_{4r}(0)$ to inside $B_{3r}(0)$

or there is a DC from inside $B_{2r}(0)$ to outside $B_{3r}(0)$.

Take $\tilde{R}(\varphi)$ to be 4 times the smallest r such that neither of these possibilities happens.

Sketch proof that $Z^{\delta}(\Phi)$ does not percolate, some $\delta > 0$.

Let $K > 0, \delta > 0$ (choose later). Divide \mathbf{R}^d into cubes Q_z of side K, indexed by $z \in \mathbf{Z}^d$.

Set $Y_z = 0$ iff $\rho(x, \Phi) \leq K$ and $\tilde{R}(-x + \Phi) \leq K$ for all $x \in \Phi \cap Q_z$ and $\rho(x) + \rho(y) + 2\delta < |x - y|$ for all $x, y \in \bigcup_{z': ||z' - z||_{\infty} = 1} Q_{z'}$ that are not grain-neighbours.

Otherwise $Y_z = 1$.

 $(Y_z, z \in \mathbf{Z}^d)$ is finite range dependent site percolation, with $\mathbb{P}[Y_z = 1]$ arbitrarily small by choice of K, δ .

If there is an infinite path in $Z^{\delta}(\Phi)$, there must be an infinite path in the (Y_z) process.

References

- [1] D.J. Daley, G. Last (2005). 'Descending chains, lilypond growth ...' Adv. in Appl. Probab. **37**, 604–628.
- [2] O. Häggström, R. Meester (1996). 'Nearest neighbor and hard sphere models ...' *Random Struct. Algorithms* **9**, 295–315.
- [3] M. Heveling, G. Last (2006). 'Existence, uniqueness and algorithmic computation of general lilypond systems.' *Random Struct. Algorithms* 29, 338–350.
- [4] M. Penrose (2007) 'Gaussian limits for random geometric measures.' *Elec. J. Probab.* 12, 989-1035.
- [5] M.D. Penrose, J.E. Yukich (2001). 'Central limit theorems for some graphs ...' Ann. Appl. Probab. 11, 1005–1041.