MA30253: Continuum Mechanics Tutorial Sheet 3

1. Show that $\frac{\partial(\det \mathbf{F})}{\partial F_{i\alpha}} = (\operatorname{Cof} \mathbf{F})_{i\alpha}$ on $M^{3\times 3}$, where $\operatorname{Cof} \mathbf{F}$ is the cofactor matrix¹ of \mathbf{F} .

2. Show that if $\phi(\mathbf{X}, t)$ is a motion and $\mathbf{F} = \left(\frac{\partial \phi_i}{\partial \mathbf{x}_{\alpha}}\right)$ is the deformation gradient tensor, then

$$\frac{d}{dt} \left(\det \mathbf{F}(\mathbf{X}, t) \right) = (\nabla \cdot \mathbf{v}(\mathbf{x}, t)) \left(\det \mathbf{F}(\mathbf{X}, t) \right),\,$$

where $\mathbf{x} = \phi(\mathbf{X}, t)$.

3. A motion $\phi : \Omega \times [0,T] \to \mathbb{R}^3$ is *isochoric* (volume preserving) if det $(D\phi(\mathbf{X},\mathbf{t})) \equiv \mathbf{1}$. Show that the corresponding velocity $\mathbf{v}(\mathbf{x},t)$ and density² $\rho(\mathbf{x},t)$ then satisfy

(i)
$$\nabla \cdot \mathbf{v} = \frac{\partial v_i(\mathbf{x},t)}{\partial x_i} = 0,$$

(ii) $\frac{D\rho(\mathbf{x},t)}{Dt} = 0,$
(iii) $\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0,$
for $\mathbf{x} \in \Omega_t, t \in [0,T].$

(In fact, all these notions can be shown to be equivalent for sufficiently regular motions.)

4. Show that the spin tensor \mathbf{W} (i.e., the skew symmetric part of the spatial velocity gradient) satisfies

$$\omega(\mathbf{x},t) \times \mathbf{a} = 2\mathbf{W}\mathbf{a} \ \forall \mathbf{a} \in \mathbb{R}^3,$$

where $\boldsymbol{\omega} = (\omega_i), \, \omega_i = \epsilon_{ipq} W_{qp}$, and that $\boldsymbol{\omega} = \nabla \times \mathbf{v}(\mathbf{x}, t)$ (i.e., the vorticity of the flow).

5. Suppose that $f \in C(\Omega)$, that $D_{\epsilon}(\mathbf{x}_0)$ are subdomains containing \mathbf{x}_0 with diameter $(D_{\epsilon}(\mathbf{x}_0)) \to 0$ as $\epsilon \to 0$. Show that

$$\frac{\int_{D_{\epsilon}(\mathbf{x}_{0})} f(\mathbf{x}) \, dV_{\mathbf{x}}}{\operatorname{Vol}(D_{\epsilon}(\mathbf{x}_{0}))} \to f(\mathbf{x}_{0}) \text{ as } \epsilon \to 0.$$

Similarly, suppose that $S_{\epsilon}(\mathbf{x}_0) \subset \Omega$ is a family of surfaces enclosing \mathbf{x}_0 , and that diameter $(S_{\epsilon}) \to 0$ as $\epsilon \to 0$. Show that

$$\frac{\int_{S_{\epsilon}(\mathbf{x}_0)} f(\mathbf{x}) \, dA_{\mathbf{x}}}{\operatorname{Area}(S_{\epsilon}(\mathbf{x}_0))} \to f(\mathbf{x}_0) \text{ as } \epsilon \to 0.$$

¹So that $(\operatorname{Cof} \mathbf{F})^T \mathbf{F} = \mathbf{F} (\operatorname{Cof} \mathbf{F})^T = (\det \mathbf{F}) I_n.$

²The density $\rho(\mathbf{x},t)$ at $\mathbf{x} \in \Omega_t$ is related to the density $\rho_0(\mathbf{X})$ at $\mathbf{X} \in \Omega$ by $\rho(\mathbf{x},t) = \frac{\rho_0(\mathbf{X})}{\det D\phi(\mathbf{X},t)}$, where $\mathbf{x} = \phi(\mathbf{X},t)$. (This follows by conservation of mass and the change of variables formula for multiple integrals.)