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Objectives 

List the main objectives of the proposed research in order of priority [up to 4000 chars] 

Cylindrical algebraic decompositions are a very useful computational tool for understanding the geometry, and in 
particular the connectedness, of the real solutions of systems of equations and inequalities. The investigators, and many 
others, have used such decompositions to solve many practical problems which can be reduced to connectedness 
questions. However, as the PI and colleagues [10, 19] have previously shown, computing them is inherently doubly 
exponential in the number of variables. Recent Canadian work [26] has produced an alternative means of computing 
cylindrical algebraic decompositions via triangular decompositions. In 2010 the Canadians and the PI [12] showed that, 
under suitable assumptions, the highest (complex) dimensional component of a system can be computed in singly-
exponential time, and have produced encouraging experimental results.   
  
Hence the fundamental aim of this project is to investigate, both in theory and in practice, how [12] and [26] interact. This 
is therefore incremental, in that it builds on these papers and the PI's previous work on the complexity of cylindrical 
algebraic decomposition, but also transformative in that it offers the possibility of breaking through the doubly-exponential 
barrier, and producing algorithms which solve practical problems in singly-exponential time.  
  
In somewhat more detail, we have 5 objectives in the following logical order. 2 is the most important, but relies on 1. 3-5 
will be corollaries of the first two.  
1. Understanding the Complexity  
The apparent contradiction between singly and doubly exponential is resolved by the fact that n iterations of a process 
where the output is singly-exponential in the input will give a doubly-exponential answer. But precisely where in the 
process does the doubly-exponential complexity manifest itself? Over the complexes, it is possible to perform triangular 
decomposition in singly-exponential time, so the fact that we are solving over the reals is clearly important. Understanding 
this would lead to a better understanding of [26] and its inherent complexity.  
2. Adding laziness to cylindricity  
To what extent is it possible to perform the MakeCylindrical operation of [26] on the sort of lazy structure output by [12]? 
Note that [13] proposes significant improvements to the border polynomial construct of [12], which is what defines those 
parts which are deferred, i.e. about which we are going to be lazy.  
3. Linguistic Refinement  
Though it makes no difference to the asymptotic complexity, allowing a wider range of connectives, e.g. "less than or 
equal to" as well as "less than", makes a substantial difference in practice with earlier versions of cylindrical algebraic 
decomposition. Is the same true here? Can we quantify the improvement? What happens if we allow the construct "x is 
not equal to y", rather than coding it as "x is less than y or x is greater than y"? Furthermore, as well as allowing these in 
the input, can we use them in the output with a view to generating more natural output?  
4. Application to cuts  
Both branch cuts in the simplication application, and obstacles in the robotics application, tend to be defined by parts of 
lines and curves, rather than the whole line/curve. [20] shows that in certain applications this can lead to a simpler 
decomposition: this direction needs to be explored in greater generality.  
5. Further optimisations  
We would like to implement the theoretical improvements in [13] to [12], and see how they behave, both directly in the 
triangular decomposition setting and with respect to cylindrical algebraic decomposition. 

Summary 

Describe the proposed research in simple terms in a way that could be publicised to a general audience [up to 4000 
chars].  Note that this summary will be automatically published on EPSRC’s website in the event that a grant is awarded. 

Connectedness, as in "can we get there from here", is a fundamental concept, both in actual space and in various 
abstract spaces. Consider a long ladder in a right-angled corridor: can it get round the corner? Calling it a corridor implies 
that it is connected in actual three-dimensional space. But if we consider the space of configurations of the ladder, this is 
determined by the position and orientation of the ladder, and the `corridor' is now the requirement that no part of the 
ladder run into the walls - it is not sufficient that the ends of the ladder be clear of the walls. If the ladder is too long, it may 
have two feasible positions, one in each arm of the corridor, but there may be no possible way to get from one to the 
other. In this case we say that the configuration space of the ladder is not connected: we can't get the ladder there from 
here, even though we can get each end (taken separately, which is physically impossible) from here to there. 
Connectedness in configuration space is therefore the key to motion planning. These are problems human beings 
(especially furniture movers, or people trying to park cars in confined spaces) solve intuitively, but find very hard to 
explain. Note that the ladder is rigid and three-dimensional, hence its position is determined by the coordinates of three 
points on it, so configuration space is nine-dimensional.  
  
Connectedness in mathematical spaces is also important. The square root of 4 can be either 2 or -2: we have to decide 
which. Similarly, the square root of 9 can be 3 or -3. But, if 4 is connected to 9 in our problem space (whatever that is), we 
can't make these choices independently: our choice has to be consistent along the path from 4 to 9. When it is impossible 
to make such decisions totally consistently, we have what mathematicians call a `branch cut' - the classic example being 
the International Date Line, because it is impossible to assign `day' consistently round a globe. In previous work, we have 
shown that several mathematical paradoxes reduce to connectedness questions in an appropriate space divided by the 
relevant branch cuts. This is an area of mathematics which is notoriously difficult to get right by hand, and 
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mathematicians, and software packages, often have internal inconsistencies when it comes to branch cuts.   
  
The standard computational approach to connectedness, which has been suggested in motion planning since the early 
1980s, is via a technique called cylindrical algebraic decomposition. This has historically been computed via a "bottom-
up" approach: we first analyse one direction, say the x-axis, decomposing it into all the critical points and intermediate 
regions necessary, then we take each (x,y)-cylinder above each critical point or region, and decompose it, then each 
(x,y,z) above each of these regions, and so on. Not only does this sound tedious, but it is inevitably tedious - the 
investigators and others have shown that the problem is extremely difficult (doubly exponential in the number of 
dimensions).  
  
Much of the time, notably in motion planning, we are not actually interested in the lower-dimensional components, since 
they would correspond to a motion with no degrees of freedom, rather like tightrope-walking. Recent Canadian 
developments have shown an alternative way of computing such decompositions via so-called triangular decompositions, 
and a 2010 paper (Moreno Maza in Canada + Davenport) has shown that the highest-dimensional components of a 
triangular decomposition can be computed in singly-exponential time. This therefore opens up the prospect, which we 
propose to investigate, of computing the highest-dimensional components of a cylindrical decomposition in singly-
exponential time, which would be a major breakthrough in computational geometry. 

Academic Beneficiaries 

Describe who will benefit from the research [up to 4000 chars]. 

We see three distinct classes of academic beneficiaries.  
  
a) Those working in (computational) real geometry and its complexity.  
  
b) There are many people who do not realise that the geometry of space induced by the branch cuts of the various 
functions they are dealing with is fundamental to the correctness or otherwise of algebraic simplifications. Computer 
algebra systems either ignore these difficulties, and make incorrect `simplifications', or are too conservative and do not 
make desired simplifications. The Bath team have previously worked on this problem [1-4], but realising the underlying 
decompositions was a significant stumbling block in that work.   
  
c) Those working in other fields, notably robotics and associated areas, where classification and connectedness of real 
spaces is important, or would be important if only effective (meaning both theoretically efficient and practically 
implemented) algorithms were available.  
  
The theoreticians in class (a) will benefit from our published results, which will appear in key refereed conferences, and in 
a summative journal paper. We would hope that the recasting of the problem of real system solving which this project 
achieves will help many other researchers to move forward. The more practical ones will also benefit from having an 
implementation available, in a widely available computer algebra system (Maple), with which they will be able to 
experiment.  
  
Users in class (b) will benefit firstly from having an implementation of better simplification in Maple, whose authors are 
keen to exploit this technology. Here 'better' means that the system never proposes an incorrect simplification, and on a 
wide class of naturally-occurring problems can always decide whether a simplification is valid or has a counter-example. 
In a wider sense, this will also "up the ante" on simplification, and we can expect other systems to follow suit.  
  
Users in class (c) will benefit from having the necessary tools for exploring connectedness available in Maple. 

Impact Summary 

Impact Summary (please refer to the help for guidance on what to consider when completing this section) [up to 4000 
chars] 

Real geometry, i.e. the geometry of space as we perceive it without complex numbers, is vital to much of mathematics 
and many applications despite being less studied/taught (because it is  harder?) than complex geometry. Solving 
problems in real geometry tends to lead to a lot of special cases (see (2) in the case for support), and is tricky to do by 
hand. Hence there are potentially many application areas for better algorithmic methods for real geometry and 
connectedness. In particular the question of interest is "connectedness within the reals": it is no good telling a robot to 
turn through an imaginary angle.  
  
A) The theory of cylindrical algebraic decomposition was originally invented to solve the quantifier elimination problem: 
given a sentence containing "for all " or "there exists" clauses, produce an equivalent sentence without such clauses. 
Note that many sentences which appear not to contain such clauses in fact do: the [false over the reals] statement "sin is 
an invertible function" is really "for all y there exists an x such that y = sin(x)". Hence there are numerous applications in 
logic and computational mathematics which can benefit from better cylindrical algebraic decomposition: both in the U.K. 
and world-wide.   
  
B) Motion planning for robots and similar devices such as automatically-steered cars, can be seen, as in [32], as 
"connectedness in configuration space", i.e. "can we get there from here", where "here" and "there" are configurations of 
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the robot, rather than simply spatial points.  This "configuration space" is typically of much higher dimension than one 
might expect: a rigid body in three-dimensional space is defined by three points, i.e. nine dimensions in all. Hence it is 
very important to have algorithms which behave efficiently as the number of dimensions grows, and this project should 
produce such algorithms. Motion planning is one of the areas we have worked on in the past [17], and we intend to 
pursue exemplar case studies ourselves, as well as disseminating our work via the IMRCs and appropriate 
conferences.The benefits of better motion planning are incalculable, ranging from better  housework robots to the 
"Factory of the Future". Reconfiguring a "Factory of the Future" requires off-line motion planning, a "motion compiler", 
which would be a major gain: achievable via the use of the Maple software we will deliver. Further down the line one 
might envisage on-line motion planning, where our improvements in algorithmic performance would be even more 
significant.  
  
C) Many mathematicians, and users of mathematics, have problems with apparently-simple function definitions. It is 
impossible to define 'square root' as a continuous function on the whole complex plane, since the argument of the square 
root of x is half the argument of x, and therefore the square root of 1 could be either 1 or -1, and neither choice is 
consistent with continuity. Hence one has to introduce 'branch cuts', and say that the definition is discontinuous as one 
crosses this cut. These cuts mean that many formulae are not in fact correct, either for special values ("log(1/x)=-log(x)" is 
not true when x=-1), or in much of the complex plane ("sqrt(x**2-1)=sqrt(x-1)sqrt(x+1)" is only 50% true). The Bath team 
[1-8] have realised that this is a question of connectivity of the complement of the branch cuts. This has been 
implemented, and provides a much better (guaranteed never to state that an incorrect identity is true) simplification 
algorithm than previous ones. However, it is limited by the connectivity question, and the breakthrough envisaged in this 
project will make the connectivity approach to simplification much more feasible. Maplesoft (see letter of support) would 
be very interested in this, and where one leading vendor goes, others will follow.  
  
All categories of users will benefit from our twin-track approach of scientific publication and software dissemination via the 
world-wide Maple computer algebra system. 
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Summary of Resources Required for Project 

  

Financial resources 

Summary 
fund 

heading 

Fund 
heading 

Full 
economic 
Cost 

EPSRC 
contribution 

% EPSRC 
contribution 

Directly 
Incurred 

Staff 123669.00 98935.20 80 

 
Travel & 
Subsistence 

31600.00 25280.00 80 

 Other Costs 9296.00 7436.80 80 

  Sub-total 164565.00 131652.00   

     

Directly 
Allocated 

Investigators 65651.95 52521.56 80 

 
Estates 
Costs 

19934.00 15947.20 80 

 
Other 
Directly 
Allocated 

4680.00 3744.00 80 

  Sub-total 90265.95 72212.76   

     

Indirect 
Costs 

Indirect 
Costs 

116337.00 93069.60 80 

     

Exceptions Staff 47565.00 47565.00 100 

 Other Costs 12131.00 12131.00 100 

  Sub-total 59696.00 59696.00   

     

 Total 430863.95 356630.36   
 

 Summary of staff effort requested 

 Months 

Investigator 8.75 

Researcher 36 

Technician 0 

Other 0 

Visiting Researcher 0 

Student 42 

Total 86.75 
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Other Support 

Details of support sought or received from any other source for this or other research in the same field. 

Awarding 
Organisation 

Awarding 
Organisation’s 
Reference 

Title of project 
Decision 
Made 
(Y/N) 

Award 
Made 
(Y/N) 

Start Date End Date 

Amount 
Sought / 
Awarded 
(£) 

University of 
Waterloo 
(Canada) 

Mark 
Giesbrecht 

Davenport Sabbatical Y Y 15/02/2009 15/07/2009 10000 
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Staff 

Directly Incurred Posts 

   
EFFORT ON 
PROJECT 

      

Role Name /Post Identifier Start Date 

Period 
on 

Project 
(month

s) 

% of 
Full 
Time 

Scale 
Increment 

Date 

Basic 
Starting 
Salary 

Londo
n 

Allow
ance 
(£) 

Super-
annuatio
n and NI 

(£) 

Total cost on 
grant (£) 

Researcher Researcher (postdoc) 01/01/2012 36 100 
Research0

7 
01/04/2012 31671 0 7429 123669 

 Total 123669 

Applicants 

Role Name 

Post will 
outlast 
project 
(Y/N) 

Contracted 
working week as 
a % of full time 
work 

Total number of hours to 
be charged to the grant 
over the duration of the 
grant 

Average number 
of hours per week 
charged to the 
grant 

Rate of 
Salary 
pool/bandin
g 

Cost estimate 

        

Principal 
Investigato
r 

Professor James Davenport Y 100 684 3.9 110166 45669 

Co-
Investigato
r 

Dr Russell Bradford Y 100 504 2.9 65421 19983 

 Total 65652 

Exceptions 

Role Name /Post Identifier /Institution Start Date 

London 
Allowance 
(£) 

Fees Stipend 

Project 
Student 

 Research Student / University of Bath 01/10/2011 No 12131.00 47565.00 
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Travel and Subsistence 

Destination and purpose Total £ 

Outside 
UK 

Closing workshop: with conference TBC 7000 

Outside 
UK 

ISSAC 2012 - Grenoble 3000 

Outside 
UK 

ISSAC 2013 - North America, +Brown/U.W.O. 4500 

Outside 
UK 

ISSAC 2014 - Europe? 4000 

Outside 
UK 

ISSAC 2015 (Far East??) 4000 

Outside 
UK 

MEGA 2013 (Europe?) 2000 

Outside 
UK 

MEGA 2015 (Europe?) 1000 

Outside 
UK 

Visit to Canada (U.W.O. & Maplesoft) 3600 

Within 
UK 

Moreno Maza visit to Bath (with ISSAC 2014) 500 

Within 
UK 

UK robotics dissemination to IMRC etc. (two) 1000 

Outside 
UK 

International robotics dissemination 1000 

Total £ 31600 

Other Directly Incurred Costs 

Description Total £ 

Closing workshop organisational costs 3000 

2xDell Optiplex 980 with 8GB memory (RO+Student): needed to run 
development version of Maple 

1922 

Toshiba Portege R700-185 laptop: needed to run development version of 
Maple: for demonstrations and visits to collaborators. 

1374 

Recruitment costs (postdoc and student) 3000 

Total £ 9296 

Other Directly Allocated Costs 

Description Total £ 

Pool staff costs 4680 

Total £ 4680 

Project Partners: details of partners in the project and their contributions to the research.  These contributions are in 
addition to resources identified above. 

1 Name of partner organisation 
Division or 
Department 

Name of contact 

Maplesoft Director of Research Dr Juergen Gerhard 

Direct contribution to project Indirect contribution to project 

 Description Value £  Description Value £ 

cash   
use of 
facilities/ 
equipment 

  

equipmen
t/material
s 

Use of Development Version 
(notional cost) 

1 staff time Advisory Group  4000 

secondm
ent of 
staff 

  other   

other   Sub-Total  4000 

Sub-Total  1  Total Contribution 4001 

 

Total Contribution from all Project 
partners 

£4001 
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OTHER INFORMATION 

Reviewers 

1 Name Organisation Division or Department Email Address 

Professor Alex Wilkie 
The University of 
Manchester 

Mathematics awilkie@maths.manchester.ac.uk 

Reviewers 

2 Name Organisation Division or Department Email Address 

Professor Lawrence 
Paulson 

University of Cambridge Computer Laboratory LP15@cam.ac.uk 

Reviewers 

3 Name Address Town Email Address 

Professor Marie-Francoise 
Coste-Roy 

IRMAR RENNES 
marie-francoise.roy@univ-
rennes1.fr 
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Pathways to Impact

Who will bene�t from this research?

The immediate impact will be on the computer algebra community, through
the development of better algorithms and better understanding the the com-
plexity of cylindrical algebraic decomposition, and its approach to Real Ge-
ometry. Beyond that, there are as many applications as mathematics has
itself.

� Formal mathematics and formal proof. As one of the leading arithmetic
veri�ers at Intel has said:

It wasn't until I came to formalise these identities [of elemen-
tary functions] that I realised how messy the side-conditions
could become. [30, and attached letter of support]

These identities can be automatically handled, and the side-conditions
automatically derived, by the method of [4], but in practice this cur-
rently founders on the rock of cylindrical algebraic decomposition for
many examples.

� Robotics and motion planning. This can theoretically be done by the
method of [32], but again in practice this currently founders on the rock
of cylindrical algebraic decomposition for many examples. It is worth
noting that we are only interested1 in connectivity of components of full
dimension, so this application is intrinsically suitable for the approach
of [12].

� Algebraic simpli�cation is a key issue for computer algebra. As Maple-
soft write in their letter of support

it goes without saying that we would have improved our
simpli�cation methods if we could, so this additional insight,
translated into usable code, will be most interesting to us.

Because of the competitive nature of the computer algebra market,
improved functionality in Maple coming from this project will auto-
matically lead to interest in these algorithms from other vendors.

1Connectivity via components of lower dimension would correspond to a move where

there was absolutely no tolerance, and thus infeasible in practice.

1
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How will they bene�t from this research?

There are essentially two routes to bene�t: from the mathematics and al-
gorithmics, and from access to an actual implementation. The �rst will
be achieved through the standard scienti�c dissemination routes, while the
second will be achieved by building our software implementation on top of
Maple and the existing tools in Maple, and we would expect to follow the
experience of the University of Western Ontario, where their code (which in-
cluded contributions from the PI) made its way into production Maple quite
quickly.

What will be done to ensure that they have the opportunity

to bene�t from this research?

The research programme proper is planned to �nish in December 2014. We
propose a subsequent 9-month dissemination phase (during the initial pe-
riod of which the research student will also be completing their thesis). We
propose two main activities in this period, which cannot reasonably be done
while the research is still ongoing.

1. A workshop, probably organised as a satellite activity to an existing
conference such as ISSAC or CICM, in which we, and others such as
Brown and the Canadians, would explore, and talk about, the results
of this research and associated results. We would naturally extend invi-
tations to the other U.K. teams using real algebraic geometry, notably
the MetiTarski group at Cambridge, and in Edinburgh.

2. A major journal paper, pulling together the individual results of the
researchers, which will have appeared in various conference papers
written during the research phase of the project. This is a technique
we have previously employed, where [4] pulled together the results of
[1, 2, 5, 3].

3. In terms of dissemination into robotics and advanced manufacturing,
we will work with the EPSRC-funded Innovative Manufacturing Re-
search Centres, especially the Bath one, which is thematically as well
as geographically closest to our interests, to ensure that there is proper
dissemination into that community.

2
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Real Geometry and Connectedness via Triangular Description

Track Record and Case for Support

PI: Professor James Davenport holds a joint
appointment between Mathematical Sci-
ences and Computer Science at Bath. He
has worked in computer algebra since 1976,
and in Cylindrical Algebraic Decomposition
since 1985 [16, which is still cited, as the
Davenport–Mahler–Mignotte bound, today].
His attempts to apply this to robot-motion
planning, on the lines of [32], were frustrated
by the complexity of the cylindrical decom-
positions produced [17, 18]. He has subse-
quently produced important lower bound re-
sults on the complexity of Cylindrical Alge-
braic Decomposition [10, 19].

He has twice had major visits to the Ontario
Research Centre for Computer Algebra1, two
months in 2000 (U.W.O., where he was the
first holder of the Ontario Research Chair in
Computer Algebra) and five in 2009 (Water-
loo). The first of these sparked his interest
in the verified simplification problem [15, 14]
and the second introduced him to the U.W.O.
work of [26]. In particular he contributed to
the interface design for this work [11], and
saw, at first hand, how this made its way
into the production version (14) of Maple-
soft’s flagship product, the computer algebra
system Maple. Both [11] and [12] are cited in
the β version (15) of Maple, so there was a
timelag of less than a year between [12] be-
ing submitted for publication and its appear-
ing in the β version of the product: a process
we aim to emulate.

CI: Dr Russell Bradford has worked in com-
puter algebra since 1984. He has been in-
terested in the verified simplification prob-
lem since 1992, authoring one of the earli-
est papers on the subject [6]. Since then he
worked with Davenport on the subject (see
“Team”, below). He has a long history of in-
ternational research collaborations: for ex-

1A joint laboratory between the University of Waterloo,
University of Western Ontario and Waterloo Maplesoft.

ample, the Distributed Systems Laboratory
at the University of Calgary where he was
involved with the design of virtualised appli-
ance delivery for WestGrid (who supply com-
puting services for the Universities of West-
ern Canada).

Closer to home, his research spans the
range from the abstract mathematical end of
computer science to the hard technology of
applying parallelism to the analysis of sound
[9].

Maple Maple is a major computer algebra sys-
tem, with which the team has had a great
deal of experience. It is the key delivery tech-
nology for the project, and is the means by
which the Canadian team deliver their soft-
ware. As a computer algebra system, Maple
is also an ideal setting to explore the appli-
cations to simplification. Their development
version is already used by U.W.O., so giv-
ing us a copy (quoted as £1 on JES, since
it is not commercially available) will therefore
greatly aid the collaboration with U.W.O. as
well as with Maplesoft itself.

Team This pair have held a successful EPSRC
grant (GR/R84139/01) on the simplification
problem, which produced [1]–[4], [8, 7], and
have continued to work on the problem with
a jointly-supervised research student [20].

This project differs from (GR/R84139/01)
in the amount of cooperation required with
Maplesoft and the University of Western On-
tario. The PI is an experienced collaborative
project manager, having chaired several EU
projects, and numerous PRINCE-2 projects
in the University of Bath, and this experience
will be invaluable in managing this project.

Why Bath?

Bath is a research-oriented university, and both
Mathematical Sciences and Computer Science

1
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scored highly in the last RAE, which makes it a
natural home for this project.

In the U.K., there is a certain amount of inter-
est in real decision procedures such as quantifier
elimination at Edinburgh [31] and in the theory
of real functions (also closely related to simplifi-
cation) [Paulson’s system MetiTarski [21]]. Both
groups have in fact asked us for advice on the
theory, and practical implementation, of cylindri-
cal algebraic decomposition.

There is also work on the more theoretical as-
pects of decision procedures, which indeed ex-
tend beyond the algebraic to the Pfaffian (differ-
ential equation) case, both at Bath (Vorobjov) and
elsewhere (Macintyre, Wilkie), but this work is not
aimed at practical implementation.

Hence the Bath team is uniquely situated be-
tween the pure theoreticians on the one hand,
and the primarily application solvers on the other.

Team References

[1] J.C. Beaumont, RJB, and JHD. Better Sim-
plification of Elementary Functions Through
Power Series. In J.R. Sendra, editor, Pro-
ceedings ISSAC 2003, pages 30–36, 2003.

[2] J.C. Beaumont, RJB, JHD, and N. Phisan-
but. A Poly-Algorithmic Approach to Simpli-
fying Elementary Functions. In J. Gutierrez,
editor, Proceedings ISSAC 2004, pages 27–
34, 2004.

[3] J.C. Beaumont, RJB, JHD, and N. Phisan-
but. Adherence is Better Than Adjacency. In
M. Kauers, editor, Proceedings ISSAC 2005,
pages 37–44, 2005.

[4] J.C. Beaumont, RJB, JHD, and N. Phisan-
but. Testing Elementary Function Identities
Using CAD. AAECC, 18:513–543, 2007.

[5] J.C. Beaumont, RJB, and N. Phisanbut.
Practical Simplification of Elementary Func-
tions Using CAD. In Proceedings A3L,
pages 35–40, 2005.

[6] RJB. Algebraic Simplification of Multiple-
Valued Functions. In Proceedings DISCO
’92, pages 13–21, 1993.

[7] RJB, R.M. Corless, JHD, D.J. Jeffrey, and
S.M. Watt. Reasoning about the Elemen-
tary Functions of Complex Analysis. Annals
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Case for Support

Cylindrical Algebraic Decomposition (CAD) was
invented in the 1970s [27], and is a conceptually
very powerful technique, solving previously un-
solved, or intractable, problems in, or using, real
geometry and connectedness. [26] introduced a
radically different approach to CAD, via triangular
decompositions. [12] produced new algorithms
for triangular decomposition, in which the highest
dimensional information could be extracted more
efficiently than computing the complete answer
(the ‘lazy’ approach). We wish to explore how this
lazy approach interacts with CAD in the style of
[26], and the benefits this has for various applica-
tions.

1 Introduction

CAD has been applied in numerous areas, of
which we name three:
A) in formal reasoning, quantifier elimination

and the solution of decision problems (his-
torically the first)

B) in robotics, particularly motion planning [32]
C) in (computerised) mathematics, analysis of

branch cuts and the simplification of elemen-
tary functions [1]–[4].

Practical uptake has nevertheless been limited for
three reasons.

Availability CAD has historically been imple-
mented only in specialised algebra systems,
such as QEPCAD [24], and these have
proved difficult to interface to. Indeed, the
first widely-available implementation was in
Maple of the new method from [26].

Interface CAD is not widely taught, and the data
structure produced is not natural for most
users. In addition, the data structure is
normally very large, since it describes, not
merely the full-dimensional cells, but also
their boundaries, and the boundaries of the
boundaries, and so on. For example, a 3-
dimensional cube has 6 surfaces, bounded
by 12 lines and 8 corners. In 4 dimensions,
each hypercube has 8 hypersurfaces, 24 sur-
faces, 32 lines and 16 corners. In [11], we in-
troduced a piecewise representation, which
is much more natural for most users, and al-
lows us to ‘hide the details’2.

2For ‘bottom-up’ CAD, they are still computed, but one
way of seeing this project is to avoid computing them at all.

Running Time CAD is, both theoretically and
practically, very expensive. Ideas such as
partial CAD [28] reduce the running time
substantially for quantifier elimination appli-
cations, but are not universally applicable
and do not improve the theoretical complex-
ity. Simplification [25] can be a great help
in practice, but has no theoretical analy-
sis. In addition the results can be tedious
to analyse, in view of the number of lower-
dimensional components. In [3] (Application
C), we can avoid analysing them but they are
currently still produced. In motion-planning
(Application B) they are unnecessary, but
are again produced. Hence a method only
computing the full-dimensional components
would be very desirable.

What Has Changed?

There are two answers to this question, depend-
ing on whether one wants to look at technology
push, or application pull.

Push CAD has been around for 35 years [27],
but for 34 of them there was essentially only
one way of computing them, basically the
bottom-up method of Collins. This method
is intrinsically doubly-exponential in the num-
ber of variables. In 2009 [26] introduced
an alternative perspective on the problem,
via triangular decomposition, which can be
seen as a more holistic approach to the prob-
lem. However, the then-known triangular de-
composition techniques must have the same
doubly-exponential complexity for computing
a CAD, even though over C the complex-
ity is singly-exponential in one (lazy) formu-
lation, and unknown in others. In 2010,
[12] introduced a lazy technique for the tri-
angular sets, in which the doubly-exponential
work could be deferred. If transferring this to
CAD is feasible, this would be a major break-
through.

Pull [31] shows that the decision problems are
important in practice, but the algebra is a
limiting factor. [16] shows that CAD (as
originally conceived) is infeasible for motion-
planning applications, but there are increas-
ing demands for motion-planning in contexts
such as assisted living. The applicants’
work on the verified simplification problem
(Application C) has shown the limitations of
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CAD as a building block, since the bottom-
up method is inherently doubly-exponential
in the number of variables. But no alternative
to the applicants’ work has emerged, and the
demands for verified simplification continue
[30]. In short, applications exist that can ben-
efit from this technology.

2 Background

2.1 Quantifier Elimination over the reals

Quantifier Elimination is a fundamental problem
in formal reasoning: given a statement

P (x1, . . . , xm) =
Q1y1 . . . Qnynf(x1, . . . , xm, y1, . . . , yn),

(1)

where the Qi are either ∀ or ∃, produce a
quantifier-free equivalent formula g(x1, . . . , xm).
The problem obviously depends on the language
of discourse: we consider real algebraic geome-
try, where f , g etc. are Boolean combinations of
polynomial equations p(x1, . . . , xm, y1, . . . , yn) =
0 and inequalities q(x1, . . . , xm, y1, . . . , yn) > 0. In
this language ∃x : ax2 + bx + c = 0 reduces to
b2− 4ac ≥ 0, but only when a 6= 0, and the full set
of special cases is





b2 − 4ac ≥ 0 a 6= 0
b 6= 0 a = 0
c = 0 a = b = 0

. (2)

This class of problems was solved by Tarski [33],
but the complexity of his solution was indescrib-
able3. A better (but nevertheless doubly expo-
nential in the number of variables4 m + n, i.e.
δO(2m+n)), solution had to await the concept of
CAD [27] described in the next section.

In fact the problem of quantifier elimination is
intrinsically doubly exponential: both [10, 19] pro-
duce families of P depending on n, with fixed
m, where the length of g is doubly exponential
in n, since the solutions consists of a doubly-
exponential number of isolated points. In both
cases, the construction increases n by adding
a block ∀y1 . . . ,∀yk∃yk+1 . . . ∃yl to a previous for-
mula. Since ∃x∃y is equivalent to ∃y∃x, and simi-
larly for ∀, we extend ∃ and ∀ to operate on blocks

3In the formal sense, that there was no elementary func-
tion which could describe it, i.e. no tower of exponentials of
fixed height would suffice!

4For simplicity we consider the polynomial degree δ of the
input. In principle the number of polynomials, and the height
H of the coefficients also figure in the complexity formulae,
but they behave roughly like δ.

of variables, so that, if x = (x1, . . . , xk), ∃∃x is
equivalent to ∃x1 . . . ∃xk etc. We can then refor-
mulate (1) as (3), where we do as much combin-
ing of blocks of quantifiers as we can.

P (x1, . . . , xm) =
Q0y0 . . .Qayaf(x1, . . . , xm, y1, . . . , yn),

(3)

where now Q is either ∃∃ or ∀∀.

2.2 Cylindrical Algebraic Decomposition

This technique, introduced by [27], takes a set
of polynomials p(1)i (y1, . . . , yN ) (where for conve-
nience we write yn+i for xi, and N for m+n), and
produces a sampled CAD (sCAD) of R1, . . . ,RN

which is sign-invariant for the pi. Each cell C(k)
i of

RN−k+1 is defined by

f
(k)
i,1 (yk, . . . , yN )σ

(k)
i,1 0, . . . , f

(k)
i,ni

(yk, . . . , yN )σ
(k)
i,ni

0,
(4)

where the σ(k)i,j are either = or >, such that:

1. Each RN−k+1 is the disjoint union of theC(k)
i ;

2. The C
(k)
i are connected and non-empty —

this being demonstrated by a sample point
s
(k)
i ∈ C(k)

i

3. The projection of each C(k)
i onto RN−k is one

of the C
(k+1)
i (and the sample point of C(k)

i

projects to the sample point of C(k+1)
i );

4. Each C
(1)
i is sign-invariant for the

p
(1)
j (y1, . . . , yN ), i.e. each pj is identically

positive, identically negative or identically
zero throughout each C(1)

i .

The solution to the quantifier elimination prob-
lem is then the disjunction of the formulae (4) for
those cells Cn+1

i (i.e. involving only x1, . . . , xm)
for which P is true, which is determined by in-
vestigating the truth of f at the sample points ly-
ing above the sample point of Cn+1

i , and combin-
ing the truth values according to the nature of the
quantifiers Qi (∀ means that it must be true for all
sample points, ∃means that it must be true at one
of the sample points). Collins’ algorithm for pro-
ducing such a decomposition proceeds in three
phases:

Projection Repeatedly reduce the set
p
(k)
i (yk, . . . , yN ) to a set p(k+1)

i (yk+1, . . . , yN )
such that a sCAD of RN−k sign-invariant for
p
(k+1)
i (yk+1, . . . , yN ) can be lifted to a sCAD

of RN−k+1 sign-invariant for p(k)i (yk, . . . , yN );
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Solution of the problem in R1, i.e. isolating
all the roots of the p

(N)
i (yN ) (the roots, and

the rationals separating them, becoming the
sample points in R1);

Lifting the sCAD of RN−k sign-invariant for
p
(k+1)
i (yk+1, . . . , yN ) to a sCAD of RN−k+1

sign-invariant for p(1)i (yk, . . . , yN ).

The examples of [10, 19] show that the total de-
gree of the input to the solution phase can indeed
be doubly exponential in n. It has also been re-
marked (e.g. [16]) that a CAD is overkill: not
only does it solve the problem given, but also
any other quantifier elimination problem involved
the same variables in the same order, and the
same polynomials (but possibly different σ, dif-
ferent quantifiers, and different Boolean formu-
lae). In particular the decomposition is cylindrical
(point 3 above) for all k (0 < k < N ), whereas
in fact quantifier elimination only needs cylindric-
ity at the boundaries between quantifier blocks in
(3). In particular quantifier elimination does not
require cylindricity among the xi: it is the induc-
tion process in building a sCAD that requires it.

It should be noted that a CAD of RN is auto-
matically a decomposition of RN into connected
sets each sign-invariant for the p(1)i , together with
sufficient adjacency information to deduce con-
nected components sign-invariant for the p

(1)
i .

Such a decomposition (and this is the only cur-
rently implemented way of producing it) has many
computational uses, ranging from robot motion
planning (Application B) [32] to verification of
functional identities (Application C) [4]. These ap-
plications do not actually require any cylindricity.
In practice [4, 17] these applications find the size
and cost of a CAD a significant obstacle: in [17]
even the example of a one-dimensional ladder in
a rectangular corridor produced polynomials of
degree 800.

2.3 Recent Developments

[26] recently proposed a completely different al-
gorithm for computing a CAD in three very differ-
ent phases:

InitialPartition partition CN into sets Ci on
which the p

(1)
i are invariant (always zero or

never zero);

MakeCylindrical the decomposition {Ci}, in the
sense that for any j < N , the projections of

any two Ci and Ci′ onto the last j coordinates
are either disjoint or equal;

MakeSemiAlgebraic deduce from this a CAD
on RN sign-invariant for the p(1)i .

If necessary explicit sample points are gener-
ated.

The complexity of this algorithm has not been
studied, but it has to be at least doubly expo-
nential in N [10, 19], and is unlikely to be worse
than this. All phases rely heavily on triangular
decomposition [23].

We have recently produced [12] an algorithm
which, for a set S of equations and inequalities
pi σi 0 ⊂ Z[y1 . . . yn] (where σi ∈ {=, 6=,≥, >})
produces a description (in terms of regular semi-
algebraic systems — RSAS — the equivalent for
R of regular chains) of the zero set of S, Z(S).
The algorithm is doubly exponential in N , and,
since it is likely that this problem encodes [19],
this seems inevitable. What is more interesting
is that we ([12]) have a lazy variant of this algo-
rithm. Let d be the dimension of the variety in CN

defined by the equalities of S. Then, in singly
exponential time, this algorithm produces:

1. a set (possibly empty, in the case that the di-
mension over R of Z(S) < d) Ri of RSAS
such that

⋃
iZ(Ri) ⊂ Z(S) — the comple-

ment Z(S) \⋃iZ(Ri) is of dimension < d;
2. G ⊂ Z[y1 . . . yn], referred to as the ‘finger-

print polynomial set’, and essentially “where
things might go wrong”, such that Z(S) \⋃

iZ(Ri) ⊂ Z(G = 0) and dimCZ(G = 0) <
d. In the example of (2), this would be a = 0.
Hence the part of Z(S) not represented by
the Ri can be computed by a recursive call
to this algorithm with argument S ∪ {gi = 0 |
gi ∈ G} (and therefore a smaller d).

This therefore sidesteps the doubly-exponential
barrier of [10, 19], since their examples are
zero-dimensional, and N iterations of a singly-
exponential algorithm can give us the doubly-
exponential growth in degree required by these
examples.

3 The major challenge

Informally, this can be simply stated: is it possible
to merge lazy triangular decomposition [12] and
CAD via triangular decomposition [26] to produce
an algorithm which does some kind of “lazy” CAD
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in the same sense as [12] is “lazy”, i.e. produc-
ing the high-dimensional cells of the CAD and de-
ferring the computation of the lower-dimensional
ones? It is not yet clear what the precise formal
description of a “lazy CAD” would be, and this
would need to be developed.

CAD was designed for logic (application A) and
has since been applied elsewhere.

In the applications to robotics (B), we tend to
have a certain number of equalities, which repre-
sent rigid constraints on the robot, and inequal-
ities, which represent legal positions. In [16],
considering a line in a 2-dimensional corridor,
there is the length of the ladder as a rigid con-
straint. Hence the legitimate positions lie in a 3-
dimensional subspace. A 2-dimensional or lower
space represents a constraint with no leeway, and
hence is of no interest in practical motion plan-
ning.

In the application (C) to analysis of branch cuts
[4], only the full-dimensional cells are needed to
determine whether the identity is “true except on
a set of measure zero", which is all that is needed
for many applications. Adherence [3] will often
determine whether such an identity is totally true.
Even if this doesn’t apply, G is a pointer to where
the problems might arise, and in general knowing
this allows further simplification (item 4 below).

We indicated earlier that there were three main
obstacles to the application of CAD. Let us indi-
cate how our triangular set approach will address
these.

Availability Our methods will be available for,
and indeed distributed with, the widely-used
Maple computer algebra package.

Interface Building on [11], we will have a more
natural interface to CAD, which will also
be more comprehensible since the lower-
dimensional special cases will be at least
hidden, and in many cases not even evalu-
ated.

Running Time As stated above, many applica-
tions do not require these lower-dimensional
components, and by not even computing
them we should save time, hopefully by an
exponential factor.

4 Methodology

The project will proceed on two, interacting,
tracks, essentially ‘Practical’ (Work package 2),

led by Bradford, and ‘Theoretical’ (Work package
3), led by Davenport. Work package 1 is project
initiation and package 4 is the research student’s
research training, culminating in the thesis.

WP2 — Practical. This work package will be un-
dertaken by the research officer, under the
guidance of Bradford and Davenport.

WP3 — Theoretical. This work package will be un-
dertaken by the research student, under the
guidance of Davenport and Bradford.

Within these work packages, there are five issues
to be explored. P indicates an issue to be ex-
plored in the ‘practical’ work package (2), and T
one for the ‘theoretical’ work package (3). We
use p and t to indicate lesser importance of these
packages.

1. Understanding the Complexity. P Does
the problem solved by [12] actually encode
the examples of [19, 10] (and hence the dou-
bly exponential behaviour of the non-lazy al-
gorithm is inherent) or not? In the latter
case, it would seem to be (though again this
would need research) the MakeCylindrical
step of the algorithm of [26] which accounts
for the doubly exponential nature of these al-
gorithms when applied to [19]. t This would
lead to better understanding of the complex-
ity of [26].

2. Adding laziness to cylindricity. P Is it pos-
sible to adapt the MakeCylindrical step of the
algorithm of [26] so as only to provide cylin-
dricity corresponding to the blocks in (3)? If
so, this would be a significant step forward for
practical quantifier elimination, and possibly
bring the complexity of the algorithm closer
to the theoretical lower bound of δO(N2a). It
would certainly be of great advantage to the
other applications of a CAD that don’t need
cylindricity as such, including applications B
and C.
This is non-trivial, since the standard argu-
ment that shows that the cells are connected
relies on cylindricity, inducting from the (triv-
ial) connectedness of the components of a
decomposition of R1. However, previous at-
tempts at reducing the cylindricity require-
ment (e.g. [22]) have foundered on the fact
that the projection phase of [27] has to guar-
antee cylindricity during the lifting phase, but
it is too early at that stage to know what the
cylindricity requirements will be. Since [26]
fundamentally does not work the same way,
the issue is worth revisiting.
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3. Linguistic Refinement. T As stated above,
the algorithm of [27] does not distinguish be-
tween equalities and inequalities during the
construction of a sCAD: this only matters
during the solution of the quantifier elimina-
tion problem. Modern implementations (such
as QEPCAD [24]) take advantage of this to
some extent, using the ideas of [28]), but it is
fair to say that this is not systematic. [26],
aiming to produce a complete CAD in the
sense of [27], does not distinguish either. p
[12] makes a four-fold distinction of the con-
nective being =, 6=, >,≥ ( 6= and ≥ are log-
ically redundant, but pragmatically useful).
How can this be used to improve the CAD
produced?

4. Application to cuts. P/T The other appli-
cations of CAD tend to deal in sections of
curves rather than complete curves. For ex-
ample the branch cut of log(x + iy) (and
therefore

√
x+ iy) is [4]

y = 0 ∧ x < 0, (5)

and the corridor considered in [17] consists
of y = 0∧x < 0, y = 1∧x < −1, x = 0∧y > 0
and x = −1 ∧ y > 1. We have already ob-
served [20] that this form of constraint lends
itself to pre-processing. For example, in the
purported identity

√
z2 − 1

?
=
√
z − 1

√
z + 1 (6)

the translation of (5) gives us

xy = 0 ∧ x2 − y2 − 1 < 0. (7)

This gives us 29 cells to investigate with [26],
and 36 with [24]. Replacing it with the equiv-
alent (pseudo-dividing the inequality by the
equality)

xy = 0 ∧ −y4 − y2 < 0, (8)

reduces the CADs to 21 cells with [26], and
22 or 24 with [24]. In more dimensions we
would expect the effect to be more striking.
This idea could already be applied in the al-
gorithm of [12], since more reductions might
be possible in S ∧ {gi = 0 | gi ∈ G} than
were possible simply in S. Again, this might
be very useful in practice despite the theo-
retical barrier of [10, 19]. It could also be ap-
plied in any merged version of [12, 26], since
preconditioning could be applied during the
recursive reductions as well as at the start.

5. Further optimisations. P The PI and the
Canadian team have recently [13] proposed
various improvements to [12], not all of which
have yet been implemented. We would like
to implement these, and then see how they
behave in practice.

5 Project Management

We will have weekly meetings of the project team.
These will be followed up with quarterly reports to
the Advisory Group.

5.1 Advisory Group

We propose an international Advisory Group to
steer the project. Modern tele-conferencing tools
are at the stage where we do not propose phys-
ical meetings, but will have a formal rendezvous,
with an agreed summary and plan of future work
after three months and every subsequent year.
We propose the following members, and letters
of support are attached.

• Jürgen Gerhard, Waterloo Maplesoft.
• Marc Morena Maza, University of Western

Ontario. He is the team leader of the Cana-
dian team, and collaboration with his team is
very important to the project.

• C.K. Yap, City University of New York, repre-
senting application area B.

• Chris Brown, USNA and author of QEPCAD,
probably the leading implementation of [28],
representing the theory of CAD, and Applica-
tion A.

• John Harrison, Intel, for the logical difficulties
of branch cuts in application area C.

5.2 Risk Management

We see various potential risks in the project: both
external (1–3) and internal (4–5). The risks iden-
tified are manageable.

1. Failure to recruit. It is possible that we would
be unable to recruit either a research officer
or a research student. This seems unlikely,
given both the current economic state and
the investigators’ numerous contacts with
Europe and beyond. Perhaps more likely is
that the research officer would be unable to
start on the planned date, but this would not
be a serious barrier if this start date should
slip by three months, and even six would be
possible. The University of Bath is already
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receiving applications from suitable research
students in the general area.

2. Weakened collaboration with Maplesoft. This
is clearly important to the project’s software
dissemination. Clearly Maplesoft will make
its decisions in its commercial interest, but
we note that they have incorporated the
Western Ontario code in the past, and that
their presentation “New Features in Maple
14” at ISSAC 2010 dwelt largely on [11].
Hence it is likely that Maplesoft will incor-
porate successful software arising from this
project. However, this is not vital to the
dissemination of the theoretical side of the
project, and indeed the software could still be
disseminated as a separate piece of Maple
source code.

3. Weakened collaboration with University of
Western Ontario. This has proved very suc-
cessful in the past, not only in papers [11,
12], but also in telepresence at seminars etc.
There is no reason to believe that this will
change. However, if for any reason it should,
we observe that Maple is not a closed sys-
tem, we have and can develop, the Maple
code, and that development of our software
could proceed independent of any collabora-
tion with Western Ontario.

4. Inability to define a ‘lazy’ CAD. this would
be worrying, and we would need to try to
prove that such a concept did not exist. This
would then at least provide a negative result,
and show, even more fundamentally than
[19, 10], the limitations of CAD.

5. Inability to define ‘cylindrical by blocks’ as in
issue 2 above. This would be a blow, and
again would indicate that CAD is not as pow-
erful as we would hope. We think this out-
come is unlikely, as the known bad cases for
CAD [19, 10] depend on having many small
blocks.

As can be seen, though there are external risks,
they are not fatal to the project, and we have mit-
igation strategies. The existence of internal risks
is inherent in research, but we observe that there
are alternative, admittedly negative, results that
could emerge.
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Justi�cation of Resources

Investigators Davenport will be the principal investigator, with Bradford as
co-investigator.

Preparation/Research Phases (�rst 39 months) Based on past ex-
perience, We request 3 hours/week for Bradford and Davenport.
In terms of the major research packages, Bradford will concentrate
on WP2 (practical) and Davenport on WP3 (theoretical), building
on [10, 19]. For applications, Davenport will focus on B, building
on [16], while Bradford will focus on C, building on [6] and [1]�
[4]. Because of the co-operative nature of this project, we request
an additional 1 hour/week for Davenport as Project Manager and
responsible for liaison with the Canadian team and other advisors.

Dissemination Phase (last 9 months) We request 3 weeks for Daven-
port (workshop organiser) and 2 weeks for Bradford.

Supervision is covered by the student's fees.

Research student The project has numerous open-ended research questions,
notably re�nement (question 3) and handling of sections rather than
whole curves (question 4). These would form suitable topics for a PhD
thesis, but the student will need research training. There is substan-
tial background, as far as we know only taught at Bath in the U.K.,
for a research student to master before he/she can be productive. We
therefore aim for a 3.5 year maths-style studentship. There is plenty of
speci�c initial training both available and necessary in the �rst year of the
studentship, not least the PI's course �CM30070 � Computer Algebra�
taught in the �rst semester. In the past the PI has run a seminar series
on Triangular Decomposition, with the Canadian team participating via
Skype, and this would also be appropriate.

Postdoc. We will need a researcher of post-doctoral experience to develop
the code required and perform the appropriate experiments to validate
the work of this project. It is unlikely (though not impossible) that
we could recruit a suitable postdoctoral researcher from the U.K., given
the very small computer algebra community here, but Davenport is in
regular contact with the major European centres, and �nding a suitable
candidate should not be too di�cult.

Travel The International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC) is the major outlet for research in computer algebra. It also
has a strong application track: for example in 2010 we heard about the
application of a parameterized quanti�ed SAT solving at Daimler Cars.

� ISSAC 2012 (Europe) PI+2
� Also in 2012 a visit to Moreno Maza in Western Ontario/ Maplesoft
in Waterloo PI+1 (almost certainly the postdoc., who may stay
longer at Western Ontario).
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� ISSAC 2013 North America + visits to Moreno Maza and Brown
(Annapolis) PI+2.

� ISSAC 2014 We assume Europe and factor in a visit by Moreno
Maza (who normally attends ISSAC) to Bath PI+3.

� ISSAC 2015 We assume the Far East PI+CI.
� The (roughly) biennial Méthodes Algébriques en Géometrie Algé-
brique (MEGA) is also a major (anglophone, despite the name)
conference. MEGA 2011 is too early, but we should certainly aim
to present at MEGA 2013 (PI+1) and 2015 (PI) � probably in
Europe.

� External dissemination, e.g. robotics: since this will occur 3+ years
from now, we cannot name conferences, but expect two UK work-
shops and one European.

� A closing workshop forms a major part of the dissemination plan.
In view of the pressure on people's time and diaries, we will try to
schedule this alongside an existing conference, aiming for a Euro-
pean one (possibly MEGA 2015 if the timing is right). We request
travel and subsistence for the the research team and two invited
speakers (¿7000), as well as organisational costs of the workshop,
such as venue hire (¿3000). By placing it alongside an existing
conference, we anticipate an attendance of 30�50.

Other Directly Incurred Costs ¿3000 is requested to cover the advertising
and interviewing costs associated with the recruitment of the Research
student and the Postdoc.

We will need two reasonably powerful (more in terms of memory than
CPU) PCs for the postdoc and research student: these will need to be
dedicated to the project, as they will be running the specially-licenced
development version of Maple, so a pool computer is not possible.

We will also need a laptop for demonstration and taking to U.W.O. and
Maplesoft, again running the development version of Maple. We will also
naturally meet the U.W.O. team at conferences, so being able to work
together on a shared develeopment version will be extremely productive.

Other Directly Allocated Costs It will be far more e�cient to have these
machines installed and maintained by the Department's support team,
and we are requesting a person-month of computer o�cer time to pur-
chase, con�gure and keep updating.
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