
Small Roots of Modular Equations

James Davenport
(with thanks to Nick Howgrave-Graham, ex-Bath/NTL, and

Paul Crouch, ex-Bath now BT)

University of Bath
(visiting Waterloo)

2 July 2009

Small roots |x0| < X of p(x) = xk + ak−1x
k−1 + · · · a0

(mod N) [HG97]

Pick a parameter h ≥ 2.

Let qi = qu,v = Nh−1−vxu(p(x))v where v = b(i − 1)/kc and u is
the remainder. qu,v (x0) ≡ 0 (mod Nh−1).
Let M be the lower triangular hk × hk matrix mi ,j = ei ,jX

j−1

where ei ,j is the coefficient of x j−1 in qi .
Det(M) = X hk(hk−1)/2Nhk(h−1)/2.
Write the LLL-“shortest” vector as r(xX), then r(x0) ≡ 0
(mod Nh−1) and

|x | ≤ X ⇒ |r(x)| ≤
(

2
hk−1

4

√
hk
)

X
hk−1

2 N
h−1

2 .

X =
⌈(

2−1/2(hk)−1/(hk−1)
)

N(h−1)/(hk−1)
⌉
− 1

means that r(x) < Nh−1 for |x | ≤ X . So r(x0) = 0.

Small roots |x0| < X of p(x) = xk + ak−1x
k−1 + · · · a0

(mod N) [HG97]

Pick a parameter h ≥ 2.
Let qi = qu,v = Nh−1−vxu(p(x))v where v = b(i − 1)/kc and u is
the remainder. qu,v (x0) ≡ 0 (mod Nh−1).

Let M be the lower triangular hk × hk matrix mi ,j = ei ,jX
j−1

where ei ,j is the coefficient of x j−1 in qi .
Det(M) = X hk(hk−1)/2Nhk(h−1)/2.
Write the LLL-“shortest” vector as r(xX), then r(x0) ≡ 0
(mod Nh−1) and

|x | ≤ X ⇒ |r(x)| ≤
(

2
hk−1

4

√
hk
)

X
hk−1

2 N
h−1

2 .

X =
⌈(

2−1/2(hk)−1/(hk−1)
)

N(h−1)/(hk−1)
⌉
− 1

means that r(x) < Nh−1 for |x | ≤ X . So r(x0) = 0.

Small roots |x0| < X of p(x) = xk + ak−1x
k−1 + · · · a0

(mod N) [HG97]

Pick a parameter h ≥ 2.
Let qi = qu,v = Nh−1−vxu(p(x))v where v = b(i − 1)/kc and u is
the remainder. qu,v (x0) ≡ 0 (mod Nh−1).
Let M be the lower triangular hk × hk matrix mi ,j = ei ,jX

j−1

where ei ,j is the coefficient of x j−1 in qi .
Det(M) = X hk(hk−1)/2Nhk(h−1)/2.

Write the LLL-“shortest” vector as r(xX), then r(x0) ≡ 0
(mod Nh−1) and

|x | ≤ X ⇒ |r(x)| ≤
(

2
hk−1

4

√
hk
)

X
hk−1

2 N
h−1

2 .

X =
⌈(

2−1/2(hk)−1/(hk−1)
)

N(h−1)/(hk−1)
⌉
− 1

means that r(x) < Nh−1 for |x | ≤ X . So r(x0) = 0.

Small roots |x0| < X of p(x) = xk + ak−1x
k−1 + · · · a0

(mod N) [HG97]

Pick a parameter h ≥ 2.
Let qi = qu,v = Nh−1−vxu(p(x))v where v = b(i − 1)/kc and u is
the remainder. qu,v (x0) ≡ 0 (mod Nh−1).
Let M be the lower triangular hk × hk matrix mi ,j = ei ,jX

j−1

where ei ,j is the coefficient of x j−1 in qi .
Det(M) = X hk(hk−1)/2Nhk(h−1)/2.
Write the LLL-“shortest” vector as r(xX), then r(x0) ≡ 0
(mod Nh−1) and

|x | ≤ X ⇒ |r(x)| ≤
(

2
hk−1

4

√
hk
)

X
hk−1

2 N
h−1

2 .

X =
⌈(

2−1/2(hk)−1/(hk−1)
)

N(h−1)/(hk−1)
⌉
− 1

means that r(x) < Nh−1 for |x | ≤ X . So r(x0) = 0.

Small roots |x0| < X of p(x) = xk + ak−1x
k−1 + · · · a0

(mod N) [HG97]

Pick a parameter h ≥ 2.
Let qi = qu,v = Nh−1−vxu(p(x))v where v = b(i − 1)/kc and u is
the remainder. qu,v (x0) ≡ 0 (mod Nh−1).
Let M be the lower triangular hk × hk matrix mi ,j = ei ,jX

j−1

where ei ,j is the coefficient of x j−1 in qi .
Det(M) = X hk(hk−1)/2Nhk(h−1)/2.
Write the LLL-“shortest” vector as r(xX), then r(x0) ≡ 0
(mod Nh−1) and

|x | ≤ X ⇒ |r(x)| ≤
(

2
hk−1

4

√
hk
)

X
hk−1

2 N
h−1

2 .

X =
⌈(

2−1/2(hk)−1/(hk−1)
)

N(h−1)/(hk−1)
⌉
− 1

means that r(x) < Nh−1 for |x | ≤ X . So r(x0) = 0.

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!

But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

How does this help?

I started out with a polynomial of degree k , often with small
coefficients, and now I have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.

Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h→∞, X → 2−1/2N1/k .

Complexity

(LLL) O(h9k6 log3 N).

(LL) O(h6k4 log2 N) (I think!).

Complexity

(LLL) O(h9k6 log3 N).
(LL) O(h6k4 log2 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq)

by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).

Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]

Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.

Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.

However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.

Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).

Complexity (LL) O(log7 N) (I think!).

Application to RSA: balanced p, q [CM07]

Suppose we can break RSA x 7→ xd (mod N = pq) by
exponentiation, i.e. we know e such that

(
xd
)e ≡ x , i.e. de ≡ 1

(mod φ(N) = (p − 1)(q − 1) = N − p − q + 1).
Let s = p + q − 1, so φ(N) = N − s. N − s is therefore the
“approximate gcd” of U = de − 1 and “approximately N”. [HG01]
Write s = s0X + x0, where 0 < x0 < X , where we will guess s0.
Take polynomials gij(x) = x i (x − N + s0X)j · Um−j , so gij(x0) ≡ 0
(mod φ(N)m): a congruence to an unknown modulus.
However, if h(xX) is the LLL-“smallest” vector in the
corresponding lattice, and ||h(xX || is small enough
(< φ(N)m/2m), we then have h(x0) = 0.
Complexity (LLL) O(log9 N).
Complexity (LL) O(log7 N) (I think!).

The general case

Write U for de − 1, φ for φ(N). Consider the polynomials

gijk(x , y) = x iy jUm−k(x + y − (N + 1))k
∣∣
xy 7→N

No mixed monomials

All ≡ 0 mod φm when (x , y) = (p, q).

Which equations?

gijk(x , y) = x iy jUm−k(x + y − (N + 1))k
∣∣
xy 7→N

m + 1 i = 0, j = 0, 0 ≤ k ≤ m

m + 1 i = 1, j = 0, 0 ≤ k ≤ m

a− 1 1 < i ≤ a, j = 0, k = m

b i = 0, 1 ≤ j ≤ b, k = m

2m+a+b+1 total.

Given that there are no mixed monomials, we have
(a + m) + (b + m) + 1 monomials.

Assume high-order components known

Assume we know p = p0X + x , q = q0Y + y with 0 ≤ x < X ,
0 ≤ y < Y .

Then write tijk(x , y) = gijk(p0X + x , q0Y + y).
Consider the lattice of coefficients of tijk(xX , yY): e.g. (m = 3,
a = 2, b = 1)

t000

t100

t001

t101

t002

t102

t003

t103

t203

t013

U3

∗ U3X
∗ ∗ U2Y
∗ ∗ ∗ U2X 2

∗ ∗ ∗ ∗ UY 2

∗ ∗ ∗ ∗ ∗ UX 3

∗ ∗ ∗ ∗ ∗ ∗ Y 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ X 4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 4

Assume high-order components known

Assume we know p = p0X + x , q = q0Y + y with 0 ≤ x < X ,
0 ≤ y < Y . Then write tijk(x , y) = gijk(p0X + x , q0Y + y).
Consider the lattice of coefficients of tijk(xX , yY): e.g. (m = 3,
a = 2, b = 1)

t000

t100

t001

t101

t002

t102

t003

t103

t203

t013

U3

∗ U3X
∗ ∗ U2Y
∗ ∗ ∗ U2X 2

∗ ∗ ∗ ∗ UY 2

∗ ∗ ∗ ∗ ∗ UX 3

∗ ∗ ∗ ∗ ∗ ∗ Y 3

∗ ∗ ∗ ∗ ∗ ∗ ∗ X 4

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ X 5

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Y 4

Recovery?

As in the univariate case, if h(x0, y0) ≡ 0 (mod φ)m and
||h(xX , yY || < φm/

√
w where h has w monomials, then

h(x0, y0) = 0 exactly.

In our case, w = 2m + a + b + 1 (no mixed monomials!).
Complexity (LLL) O(log12 N).
Complexity (LL) O(log9 N) (I think!).
Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Recovery?

As in the univariate case, if h(x0, y0) ≡ 0 (mod φ)m and
||h(xX , yY || < φm/

√
w where h has w monomials, then

h(x0, y0) = 0 exactly.
In our case, w = 2m + a + b + 1 (no mixed monomials!).

Complexity (LLL) O(log12 N).
Complexity (LL) O(log9 N) (I think!).
Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Recovery?

As in the univariate case, if h(x0, y0) ≡ 0 (mod φ)m and
||h(xX , yY || < φm/

√
w where h has w monomials, then

h(x0, y0) = 0 exactly.
In our case, w = 2m + a + b + 1 (no mixed monomials!).
Complexity (LLL) O(log12 N).

Complexity (LL) O(log9 N) (I think!).
Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Recovery?

As in the univariate case, if h(x0, y0) ≡ 0 (mod φ)m and
||h(xX , yY || < φm/

√
w where h has w monomials, then

h(x0, y0) = 0 exactly.
In our case, w = 2m + a + b + 1 (no mixed monomials!).
Complexity (LLL) O(log12 N).
Complexity (LL) O(log9 N) (I think!).

Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Recovery?

As in the univariate case, if h(x0, y0) ≡ 0 (mod φ)m and
||h(xX , yY || < φm/

√
w where h has w monomials, then

h(x0, y0) = 0 exactly.
In our case, w = 2m + a + b + 1 (no mixed monomials!).
Complexity (LLL) O(log12 N).
Complexity (LL) O(log9 N) (I think!).
Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Unbalanced e, d : ed < N3/2

Just to remind you that this is trivial (no lattices)

Suppose ed = 1 + kφ(N), and approximate k by k ′ = (ed − 1)/N.
Then 0 ≤ k − k ′ ≤ 6, and we test all: O(log2 N).

Unbalanced e, d : ed < N3/2

Just to remind you that this is trivial (no lattices)
Suppose ed = 1 + kφ(N), and approximate k by k ′ = (ed − 1)/N.
Then 0 ≤ k − k ′ ≤ 6, and we test all: O(log2 N).

A different scenario

Let’s not assume we know the secret exponent.

Let’s consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.
Our aim now is to recover individual messages rather than break
the key as such.

A different scenario

Let’s not assume we know the secret exponent.
Let’s consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.

Our aim now is to recover individual messages rather than break
the key as such.

A different scenario

Let’s not assume we know the secret exponent.
Let’s consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.
Our aim now is to recover individual messages rather than break
the key as such.

IP

Figure: IP datagram, showing the fields in the IP header

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

Checksum = −
∑

wi (mod 65535): wi the 16-bit words in the
header.

Low-exponent RSA-encrypted IP [CD01]

Assume an IP packet m is sent as md (mod N) for some small
exponent d . If we can, e.g. denial of service, get two
transmissions, where the identification differs by c , we have
md (mod N) and(

m + (248 − 1)c272
)d

(mod N)

(assuming no checksum wrapping).

Eliminating m gives a degree d2 equation in c , where c < 216. In
fact, this is a degree d equation in cd .
Checksum wrapping gives us(

m +
(
(248 − 1)c − 1

)
272
)d

(mod N)

again a degree d2 equation in c , but this doesn’t collapse.

Low-exponent RSA-encrypted IP [CD01]

Assume an IP packet m is sent as md (mod N) for some small
exponent d . If we can, e.g. denial of service, get two
transmissions, where the identification differs by c , we have
md (mod N) and(

m + (248 − 1)c272
)d

(mod N)

(assuming no checksum wrapping).
Eliminating m gives a degree d2 equation in c , where c < 216. In
fact, this is a degree d equation in cd .

Checksum wrapping gives us(
m +

(
(248 − 1)c − 1

)
272
)d

(mod N)

again a degree d2 equation in c , but this doesn’t collapse.

Low-exponent RSA-encrypted IP [CD01]

Assume an IP packet m is sent as md (mod N) for some small
exponent d . If we can, e.g. denial of service, get two
transmissions, where the identification differs by c , we have
md (mod N) and(

m + (248 − 1)c272
)d

(mod N)

(assuming no checksum wrapping).
Eliminating m gives a degree d2 equation in c , where c < 216. In
fact, this is a degree d equation in cd .
Checksum wrapping gives us(

m +
(
(248 − 1)c − 1

)
272
)d

(mod N)

again a degree d2 equation in c , but this doesn’t collapse.

Timings from [CD01]

NTL Timings in seconds to lattice reduce
RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public exponent e=3 e=5

RSA-type wrapping 512 1024 2048 512 1024 2048

IP Without 2 9 27 8068** 177 1386
With 653 3413 3976 † 793465 §

† Not implemented due to software restrictions.
** Taking α ≤ 211 allowed h = 2, with e = 5 this formed a 10x10
matrix which reduced in 19 seconds.
Since 19× 32� 8068, this illustrates the power of guessing
high-order bits.

Once we have c , we recover m by a resultant calculation.

Timings from [CD01]

NTL Timings in seconds to lattice reduce
RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public exponent e=3 e=5

RSA-type wrapping 512 1024 2048 512 1024 2048

IP Without 2 9 27 8068** 177 1386
With 653 3413 3976 † 793465 §

† Not implemented due to software restrictions.
** Taking α ≤ 211 allowed h = 2, with e = 5 this formed a 10x10
matrix which reduced in 19 seconds.
Since 19× 32� 8068, this illustrates the power of guessing
high-order bits.
Once we have c , we recover m by a resultant calculation.

References

P.A. Crouch and J.H. Davenport.

Lattice Attacks on RSA-Encrypted IP and TCP.

In B. Honary, editor, Proceedings 8th. IMA Conf. Cryptography and
Coding, pages 329–338, 2001.

J.-S. Coron and A. May.

Deterministic Polynomial-Time Equivalence of Computing the RSA
Secret Key and Factoring.

J. Cryptology, 20:39–50, 2007.

N.A. Howgrave-Graham.

Finding Small Roots of Univariate Modular Equations Revisited.

Cryptography and Coding (Ed. M. Darnell), pages 131–142, 1997.

N.A. Howgrave-Graham.

Approximate Integer Common Divisors.

In J.H. Silverman, editor, Proceedings CaLC 2001, pages 51–66,
2001.

