Small Roots of Modular Equations

James Davenport
(with thanks to Nick Howgrave-Graham, ex-Bath/NTL, and
Paul Crouch, ex-Bath now BT)

University of Bath
(visiting Waterloo)

2 July 2009

Small roots |xp| < X of p(x) = x¥ + ap_1x* 14+ - a
(mod N) [HG97]

Pick a parameter h > 2.

Small roots |xp| < X of p(x) = x¥ + ap_1x* 14+ - a
(mod N) [HG97]

Pick a parameter h > 2.
Let q; = qu,v = N""17Vx“(p(x))” where v = |(i — 1)/k] and u is
the remainder. g,,(x) =0 (mod N'~1).

Small roots |xp| < X of p(x) = x¥ + ap_1x* 14+ - a
(mod N) [HG97]

Pick a parameter h > 2.

Let q; = qu,v = N""17Vx“(p(x))” where v = |(i — 1)/k] and u is
the remainder. g,,(x) =0 (mod N'~1).

Let M be the lower triangular hk x hk matrix m; ; = e,-%,-Xf*1
where ¢; ; is the coefficient of x~1in qg;.

Det(M) = Xhk(hk=1)/2 \hk(h=1)/2,

Small roots |xp| < X of p(x) = x¥ + ap_1x* 14+ - a
(mod N) [HG97]

Pick a parameter h > 2.

Let q; = qu,v = N""17Vx“(p(x))” where v = |(i — 1)/k] and u is
the remainder. g,,(x) =0 (mod N'~1).

Let M be the lower triangular hk x hk matrix m; ; = e,-%,-Xf*1
where ¢;; is the coefficient of x~1in qg;.

Det(M) = XPk(hk=1)/2 pjhk(h=1)/2

Write the LLL-"shortest” vector as r(xX), then r(xp) =0

(mod N"~1) and

x| < X = |r(x)] < (z#\/hk) X" TN

Small roots |xp| < X of p(x) = x¥ + ap_1x* 14+ - a
(mod N) [HG97]

Pick a parameter h > 2.

Let q; = qu,v = N""17Vx“(p(x))” where v = |(i — 1)/k] and u is
the remainder. g,,(x) =0 (mod N'~1).

Let M be the lower triangular hk x hk matrix m; ; = e,-%,-Xf*1
where ¢;; is the coefficient of x~1in qg;.

Det(M) = XPk(hk=1)/2 pjhk(h=1)/2

Write the LLL-"shortest” vector as r(xX), then r(xp) =0

(mod N"~1) and

hk—1 hk—1

x| < X = |r(x)] < (2T\/hk) X" TN

X — [(2_1/2(hk)_1/(hk_1)) N(h—l)/(hk—l)—‘ 1

means that r(x) < N"=1 for [x| < X. So r(xg) = 0.

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger
coefficients!

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger

coefficients!
But the root is now over the integers. This gives us two strategies.

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.
@ Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.
@ Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).
@ Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.
@ Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).
@ Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

How does this help?

| started out with a polynomial of degree k, often with small
coefficients, and now | have one of degree hk with larger
coefficients!
But the root is now over the integers. This gives us two strategies.
@ Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).
@ Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h — 0o, X — 27 1/2N1/k,

Complexity

(LLL) O(h°kSlog® N).

Complexity

(LLL) O(h°kSlog® N).
(LL) O(h%k*log? N) (I think!).

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x — x? (mod N = pq)

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1

(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]
Write s = 50X + xp, where 0 < xg < X, where we will guess sp.

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]
Write s = 50X + xp, where 0 < xg < X, where we will guess sp.
Take polynomials gji(x) = x'(x — N + soX) - U™, so gji(x) =0
(mod ¢(N)™): a congruence to an unknown modulus.

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]
Write s = 50X + xp, where 0 < xg < X, where we will guess sp.
Take polynomials gji(x) = x'(x — N + soX) - U™, so gji(x) =0
(mod ¢(N)™): a congruence to an unknown modulus.

However, if h(xX) is the LLL-"smallest” vector in the
corresponding lattice, and ||h(xX]|| is small enough

(< ¢(N)™/2m), we then have h(xg) = 0.

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]
Write s = 50X + xp, where 0 < xg < X, where we will guess sp.
Take polynomials gji(x) = x'(x — N + soX) - U™, so gji(x) =0
(mod ¢(N)™): a congruence to an unknown modulus.

However, if h(xX) is the LLL-"smallest” vector in the
corresponding lattice, and ||h(xX]|| is small enough

(< ¢(N)™/2m), we then have h(xp) = 0.

Complexity (LLL) O(log® N).

Application to RSA: balanced p, g [CMO07]

Suppose we can break RSA x +— x9 (mod N = pq) by
exponentiation, i.e. we know e such that (xd)e =x,ie de=1
(mod ¢(N)=(p—1)(g—1)=N—-p—qg+1).

Let s=p+g—1,s0 ¢(N) =N —s. N — s is therefore the
“approximate gcd” of U = de — 1 and “approximately N". [HGO1]
Write s = 50X + xp, where 0 < xg < X, where we will guess sp.
Take polynomials gji(x) = x'(x — N + soX) - U™, so gji(x) =0
(mod ¢(N)™): a congruence to an unknown modulus.

However, if h(xX) is the LLL-"smallest” vector in the
corresponding lattice, and ||h(xX]|| is small enough

(< ¢(N)™/2m), we then have h(xp) = 0.

Complexity (LLL) O(log® N).

Complexity (LL) O(log” N) (I think!).

The general case

Write U for de — 1, ¢ for ¢(N). Consider the polynomials

gik(x:y) = X'y UM K (x +y — (N+1))"[

@ No mixed monomials
e Al =0 mod ¢™ when (x,y) = (p, q).

Which equations?

gik(x,y) = X'y U" ¥(x + y — (N + 1))]
m+1i=0,=0,0<k<m
m+1i=1,=00<k<m
a—11<i<a j=0k=m

bi=01<j<b k=m
2m+a+b+1 total.

xy—N

Given that there are no mixed monomials, we have
(a+ m)+ (b+ m)+ 1 monomials.

Assume high-order components known

Assume we know p = ppX +x, g =qoY + y with 0 < x < X,
0<y<Y.

Assume high-order components known

Assume we know p = ppX +x, g =qoY + y with 0 < x < X,
0 <y < Y. Then write tjx(x,y) = gijk(PoX + x,qo Y + y).
Consider the lattice of coefficients of tj(xX,yY): eg. (m=3,
a=2,b=1)

Q
&

tooo
t100
too1
ti01
t002
t102
to03
t103
t203
to13

U3X

U2y

U?x?

uy?

uxs

y3

* X K K KX X X X X
S G R S R S S
* X ¥ X ¥ ¥ *
* X X X X ¥

* X X X ¥
EE CHEE

Recovery?

As in the univariate case, if h(xp, yo) =0 (mod ¢)™ and
[|h(xX,yY|| < ¢™/+/w where h has w monomials, then
h(xo, yo) = 0 exactly.

Recovery?

As in the univariate case, if h(xp, yo) =0 (mod ¢)™ and

[|h(xX,yY|| < ¢™/+/w where h has w monomials, then

h(xo, yo) = 0 exactly.

In our case, w =2m+ a+ b+ 1 (no mixed monomials!).

Recovery?

As in the univariate case, if h(xp, yo) =0 (mod ¢)™ and
[|h(xX,yY|| < ¢™/+/w where h has w monomials, then
h(xo, yo) = 0 exactly.

In our case, w =2m+ a+ b+ 1 (no mixed monomials!).
Complexity (LLL) O(log'? N).

Recovery?

As in the univariate case, if h(xp, yo) =0 (mod ¢)™ and

[|h(xX,yY|| < ¢™/+/w where h has w monomials, then

h(xo, yo) = 0 exactly.

In our case, w =2m+ a+ b+ 1 (no mixed monomials!).
Complexity (LLL) O(log'? N).

Complexity (LL) O(log® N) (I think!).

Recovery?

As in the univariate case, if h(xp, yo) =0 (mod ¢)™ and
[|h(xX,yY|| < ¢™/+/w where h has w monomials, then

h(xo, yo) = 0 exactly.

In our case, w =2m+ a+ b+ 1 (no mixed monomials!).
Complexity (LLL) O(log'? N).

Complexity (LL) O(log® N) (I think!).

Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.

Unbalanced e, d: ed < N3/2

Just to remind you that this is trivial (no lattices)

Unbalanced e, d: ed < N3/2

Just to remind you that this is trivial (no lattices)
Suppose ed = 1+ k¢(N), and approximate k by k' = (ed — 1)/N.
Then 0 < k — k' <6, and we test all: O(log? N).

A different scenario

Let's not assume we know the secret exponent.

A different scenario

Let's not assume we know the secret exponent.
Let's consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.

A different scenario

Let's not assume we know the secret exponent.

Let's consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.

Our aim now is to recover individual messages rather than break

the key as such.

Figure: IP datagram, showing the fields in the IP header

g1234567893123456789312345678921
Version	IHL	Type of Servicel Total Length
Identification	Flags	Fragment Offset
Time to Live	Protocol	Header Checksum

| Source Address

| Destination Address |

Checksum = — > w; (mod 65535): w; the 16-bit words in the
header.

Low-exponent RSA-encrypted IP [CDO1]

Assume an IP packet m is sent as m? (mod N) for some small
exponent d. If we can, e.g. denial of service, get two
transmissions, where the identification differs by ¢, we have
m9 (mod N) and

(m+ (2% — 1)c272)d (mod N)

(assuming no checksum wrapping).

Low-exponent RSA-encrypted IP [CDO1]

Assume an IP packet m is sent as m? (mod N) for some small
exponent d. If we can, e.g. denial of service, get two
transmissions, where the identification differs by ¢, we have
m9 (mod N) and

(m+ (2% — 1)c272)d (mod N)

(assuming no checksum wrapping).
Eliminating m gives a degree d? equation in ¢, where ¢ < 2%®. In
fact, this is a degree d equation in c¢.

Low-exponent RSA-encrypted IP [CDO1]

Assume an IP packet m is sent as m? (mod N) for some small
exponent d. If we can, e.g. denial of service, get two
transmissions, where the identification differs by ¢, we have
m9 (mod N) and

(m+ (2% — 1)c272)d (mod N)

(assuming no checksum wrapping).

Eliminating m gives a degree d? equation in ¢, where ¢ < 2%®. In
fact, this is a degree d equation in c¢.

Checksum wrapping gives us

(m+ ((248 —1)c—1) 272)d (mod N)

again a degree d? equation in ¢, but this doesn't collapse.

Timings from [CDO1]

NTL Timings in seconds to lattice reduce
RedHat Linux 6.2 on 1Ghz Pentium Il with 500Mb RAM

Public exponent e=3 e=b
RSA-type | wrapping | 512 | 1024 [2048 | 512 | 1024 [2048
IP Without | 2 9 27 | 8068** | 177 | 1386
With | 653 | 3413 | 3976 T 793465 | §

T Not implemented due to software restrictions.
** Taking o < 21! allowed h = 2, with e = 5 this formed a 10x10
matrix which reduced in 19 seconds.
Since 19 x 32 <« 8068, this illustrates the power of guessing

high-order bits.

Timings from [CDO1]

NTL Timings in seconds to lattice reduce
RedHat Linux 6.2 on 1Ghz Pentium Il with 500Mb RAM

Public exponent e=3 e=b
RSA-type | wrapping | 512 | 1024 [2048 | 512 | 1024 [2048
IP Without | 2 9 27 | 8068** | 177 | 1386
With | 653 | 3413 | 3976 T 793465 | §

T Not implemented due to software restrictions.

** Taking o < 21! allowed h = 2, with e = 5 this formed a 10x10
matrix which reduced in 19 seconds.

Since 19 x 32 <« 8068, this illustrates the power of guessing
high-order bits.

Once we have ¢, we recover m by a resultant calculation.

References

[d P.A. Crouch and J.H. Davenport.
Lattice Attacks on RSA-Encrypted IP and TCP.

In B. Honary, editor, Proceedings 8th. IMA Conf. Cryptography and
Coding, pages 329-338, 2001.

[@ J.-S. Coron and A. May.

Deterministic Polynomial-Time Equivalence of Computing the RSA
Secret Key and Factoring.

J. Cryptology, 20:39-50, 2007.

@ NA. Howgrave-Graham.
Finding Small Roots of Univariate Modular Equations Revisited.
Cryptography and Coding (Ed. M. Darnell), pages 131-142, 1997.

H NA. Howgrave-Graham.
Approximate Integer Common Divisors.

In J.H. Silverman, editor, Proceedings CalLC 2001, pages 51-66,
ANN1

