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Pick a parameter h > 2.

Let q; = qu,v = N""17Vx“(p(x))” where v = |(i — 1)/k] and u is
the remainder. g,,(x) =0 (mod N'~1).

Let M be the lower triangular hk x hk matrix m; ; = e,-%,-Xf*1
where ¢;; is the coefficient of x~1in qg;.

Det(M) = XPk(hk=1)/2 pjhk(h=1)/2

Write the LLL-"shortest” vector as r(xX), then r(xp) =0

(mod N"~1) and

hk—1 hk—1

x| < X = |r(x)] < (2T\/hk) X" TN

X — [(2_1/2(hk)_1/(hk_1)) N(h—l)/(hk—l)—‘ 1

means that r(x) < N"=1 for [x| < X. So r(xg) = 0.
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@ Integer roots correspond to factors of the trailing coefficients
(often cheap in practice).
@ Factor modulo some small p and Hensel lift the linear factors
(guaranteed non-dominant complexity).

As h — 0o, X — 27 1/2N1/k,
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(LL) O(h%k*log? N) (I think!).
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The general case

Write U for de — 1, ¢ for ¢(N). Consider the polynomials

gik(x:y) = X'y UM K (x +y — (N+1))"[

@ No mixed monomials
e Al =0 mod ¢™ when (x,y) = (p, q).



Which equations?

gik(x,y) = X'y U" ¥(x + y — (N + 1))]
m+1i=0,=0,0<k<m
m+1i=1,=00<k<m
a—11<i<a j=0k=m

bi=01<j<b k=m
2m+a+b+1 total.

xy—N

Given that there are no mixed monomials, we have
(a+ m)+ (b+ m)+ 1 monomials.
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Assume we know p = ppX +x, g =qoY + y with 0 < x < X,
0 <y < Y. Then write tjx(x,y) = gijk(PoX + x,qo Y + y).
Consider the lattice of coefficients of tj(xX,yY): eg. (m=3,
a=2,b=1)
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[|h(xX,yY|| < ¢™/+/w where h has w monomials, then

h(xo, yo) = 0 exactly.

In our case, w =2m+ a+ b+ 1 (no mixed monomials!).
Complexity (LLL) O(log'? N).

Complexity (LL) O(log® N) (I think!).

Roughly speaking the difference in complexity comes from the fact
that we are doing 2-D guessing for p and q.
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Unbalanced e, d: ed < N3/2

Just to remind you that this is trivial (no lattices)
Suppose ed = 1+ k¢(N), and approximate k by k' = (ed — 1)/N.
Then 0 < k — k' <6, and we test all: O(log? N).
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A different scenario

Let's not assume we know the secret exponent.

Let's consider the case of IP (an industry standard) packets being
transmitted with low-exponent RSA encryption.

Our aim now is to recover individual messages rather than break

the key as such.



Figure: IP datagram, showing the fields in the IP header

g1234567893123456789312345678921
|Version| IHL |Type of Servicel Total Length |
| Identification |Flags| Fragment Offset |
| Time to Live | Protocol | Header Checksum |

| Source Address

| Destination Address |

Checksum = — > w; (mod 65535): w; the 16-bit words in the
header.
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Assume an IP packet m is sent as m? (mod N) for some small
exponent d. If we can, e.g. denial of service, get two
transmissions, where the identification differs by ¢, we have
m9 (mod N) and

(m+ (2% — 1)c272)d (mod N)

(assuming no checksum wrapping).

Eliminating m gives a degree d? equation in ¢, where ¢ < 2%®. In
fact, this is a degree d equation in c¢.

Checksum wrapping gives us

(m+ ((248 —1)c—1) 272)d (mod N)

again a degree d? equation in ¢, but this doesn't collapse.



Timings from [CDO1]
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NTL Timings in seconds to lattice reduce
RedHat Linux 6.2 on 1Ghz Pentium Il with 500Mb RAM

Public exponent e=3 e=b
RSA-type | wrapping | 512 | 1024 [ 2048 | 512 | 1024 [ 2048
IP Without | 2 9 27 | 8068** | 177 | 1386
With | 653 | 3413 | 3976 T 793465 | §

T Not implemented due to software restrictions.

** Taking o < 21! allowed h = 2, with e = 5 this formed a 10x10
matrix which reduced in 19 seconds.

Since 19 x 32 <« 8068, this illustrates the power of guessing
high-order bits.

Once we have ¢, we recover m by a resultant calculation.
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