Small Roots of Modular Equations

James Davenport (with thanks to Nick Howgrave-Graham, ex-Bath/NTL, and Paul Crouch, ex-Bath now BT)

> University of Bath (visiting Waterloo)

2 July 2009

Pick a parameter $h \ge 2$.

Pick a parameter $h \ge 2$. Let $q_i = q_{u,v} = N^{h-1-v} x^u (p(x))^v$ where $v = \lfloor (i-1)/k \rfloor$ and u is the remainder. $q_{u,v}(x_0) \equiv 0 \pmod{N^{h-1}}$.

Pick a parameter $h \ge 2$. Let $q_i = q_{u,v} = N^{h-1-v} x^u (p(x))^v$ where $v = \lfloor (i-1)/k \rfloor$ and u is the remainder. $q_{u,v}(x_0) \equiv 0 \pmod{N^{h-1}}$. Let M be the lower triangular $hk \times hk$ matrix $m_{i,j} = e_{i,j}X^{j-1}$ where $e_{i,j}$ is the coefficient of x^{j-1} in q_i . Det $(M) = X^{hk(hk-1)/2} N^{hk(h-1)/2}$.

Pick a parameter $h \ge 2$. Let $q_i = q_{u,v} = N^{h-1-v} x^u (p(x))^v$ where $v = \lfloor (i-1)/k \rfloor$ and u is the remainder. $q_{u,v}(x_0) \equiv 0 \pmod{N^{h-1}}$. Let M be the lower triangular $hk \times hk$ matrix $m_{i,j} = e_{i,j}X^{j-1}$ where $e_{i,j}$ is the coefficient of x^{j-1} in q_i . Det $(M) = X^{hk(hk-1)/2} N^{hk(h-1)/2}$. Write the LLL- "shortest" vector as r(xX), then $r(x_0) \equiv 0 \pmod{N^{h-1}}$ and

$$|x| \leq X \Rightarrow |r(x)| \leq \left(2^{\frac{hk-1}{4}}\sqrt{hk}\right) X^{\frac{hk-1}{2}} N^{\frac{h-1}{2}}.$$

Pick a parameter $h \ge 2$. Let $q_i = q_{u,v} = N^{h-1-v} x^u (p(x))^v$ where $v = \lfloor (i-1)/k \rfloor$ and u is the remainder. $q_{u,v}(x_0) \equiv 0 \pmod{N^{h-1}}$. Let M be the lower triangular $hk \times hk$ matrix $m_{i,j} = e_{i,j}X^{j-1}$ where $e_{i,j}$ is the coefficient of x^{j-1} in q_i . Det $(M) = X^{hk(hk-1)/2} N^{hk(h-1)/2}$. Write the LLL- "shortest" vector as r(xX), then $r(x_0) \equiv 0 \pmod{N^{h-1}}$ and

$$|x| \leq X \Rightarrow |r(x)| \leq \left(2^{\frac{hk-1}{4}}\sqrt{hk}\right)X^{\frac{hk-1}{2}}N^{\frac{h-1}{2}}.$$

$$X = \left\lceil \left(2^{-1/2} (hk)^{-1/(hk-1)} \right) N^{(h-1)/(hk-1)} \right\rceil - 1$$

means that $r(x) < N^{h-1}$ for $|x| \le X$. So $r(x_0) = 0$.

- I started out with a polynomial of degree k, often with small coefficients, and now I have one of degree hk with larger coefficients!
- But the root is now over the integers. This gives us two strategies.

But the root is now over the integers. This gives us two strategies.

• Integer roots correspond to factors of the trailing coefficients (often cheap in practice).

But the root is now over the integers. This gives us two strategies.

- Integer roots correspond to factors of the trailing coefficients (often cheap in practice).
- Factor modulo some small *p* and Hensel lift the linear factors (guaranteed non-dominant complexity).

But the root is now over the integers. This gives us two strategies.

- Integer roots correspond to factors of the trailing coefficients (often cheap in practice).
- Factor modulo some small *p* and Hensel lift the linear factors (guaranteed non-dominant complexity).

But the root is now over the integers. This gives us two strategies.

- Integer roots correspond to factors of the trailing coefficients (often cheap in practice).
- Factor modulo some small *p* and Hensel lift the linear factors (guaranteed non-dominant complexity).

As $h \to \infty$, $X \to 2^{-1/2} N^{1/k}$.

Complexity

(LLL) $O(h^9k^6\log^3 N)$.

Complexity

(LLL) $O(h^9 k^6 \log^3 N)$. (LL) $O(h^6 k^4 \log^2 N)$ (I think!).

Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$

Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1 \pmod{\phi(N)} = (p-1)(q-1) = N - p - q + 1)$.

Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1 \pmod{\phi(N) = (p-1)(q-1) = N - p - q + 1}$. Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1 \pmod{\phi(N)} = (p-1)(q-1) = N - p - q + 1)$. Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Write $s = s_0 X + x_0$, where $0 < x_0 < X$, where we will guess s_0 . Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1 \pmod{\phi(N)} = (p-1)(q-1) = N - p - q + 1)$. Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Write $s = s_0X + x_0$, where $0 < x_0 < X$, where we will guess s_0 . Take polynomials $g_{ij}(x) = x^i(x - N + s_0X)^j \cdot U^{m-j}$, so $g_{ij}(x_0) \equiv 0 \pmod{\phi(N)^m}$: a congruence to an *unknown* modulus. Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1$ $(\mod \phi(N) = (p-1)(q-1) = N - p - q + 1).$ Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Write $s = s_0 X + x_0$, where $0 < x_0 < X$, where we will guess s_0 . Take polynomials $g_{ii}(x) = x^i(x - N + s_0X)^j \cdot U^{m-j}$, so $g_{ii}(x_0) \equiv 0$ (mod $\phi(N)^m$): a congruence to an *unknown* modulus. However, if h(xX) is the LLL-"smallest" vector in the corresponding lattice, and ||h(xX)|| is small enough $(\langle \phi(N)^m/2m \rangle)$, we then have $h(x_0) = 0$.

Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1$ $(\mod \phi(N) = (p-1)(q-1) = N - p - q + 1).$ Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Write $s = s_0 X + x_0$, where $0 < x_0 < X$, where we will guess s_0 . Take polynomials $g_{ii}(x) = x^i(x - N + s_0X)^j \cdot U^{m-j}$, so $g_{ii}(x_0) \equiv 0$ (mod $\phi(N)^m$): a congruence to an *unknown* modulus. However, if h(xX) is the LLL-"smallest" vector in the corresponding lattice, and ||h(xX)|| is small enough $(\langle \phi(N)^m/2m \rangle)$, we then have $h(x_0) = 0$. Complexity (LLL) $O(\log^9 N)$.

Suppose we can break RSA $x \mapsto x^d \pmod{N = pq}$ by exponentiation, i.e. we know e such that $(x^d)^e \equiv x$, i.e. $de \equiv 1$ $(\mod \phi(N) = (p-1)(q-1) = N - p - q + 1).$ Let s = p + q - 1, so $\phi(N) = N - s$. N - s is therefore the "approximate gcd" of U = de - 1 and "approximately N". [HG01] Write $s = s_0 X + x_0$, where $0 < x_0 < X$, where we will guess s_0 . Take polynomials $g_{ii}(x) = x^i(x - N + s_0X)^j \cdot U^{m-j}$, so $g_{ii}(x_0) \equiv 0$ (mod $\phi(N)^m$): a congruence to an *unknown* modulus. However, if h(xX) is the LLL-"smallest" vector in the corresponding lattice, and ||h(xX)|| is small enough $(\langle \phi(N)^m/2m \rangle)$, we then have $h(x_0) = 0$. Complexity (LLL) $O(\log^9 N)$. Complexity (LL) $O(\log^7 N)$ (I think!).

Write U for de - 1, ϕ for $\phi(N)$. Consider the polynomials

$$g_{ijk}(x,y) = x^i y^j U^{m-k} (x+y-(N+1))^k \big|_{xy \mapsto N}$$

- No mixed monomials
- All $\equiv 0 \mod \phi^m$ when (x, y) = (p, q).

Which equations?

$$g_{ijk}(x, y) = x^{i} y^{j} U^{m-k} (x + y - (N+1))^{k} \Big|_{xy \mapsto N}$$

$$m+1 \quad i = 0, \ j = 0, \ 0 \le k \le m$$

$$m+1 \quad i = 1, \ j = 0, \ 0 \le k \le m$$

$$a-1 \quad 1 < i \le a, \ j = 0, \ k = m$$

$$b \quad i = 0, \ 1 \le j \le b, \ k = m$$

2m+a+b+1 total.

Given that there are no mixed monomials, we have (a + m) + (b + m) + 1 monomials.

Assume we know $p = p_0 X + x$, $q = q_0 Y + y$ with $0 \le x < X$, $0 \le y < Y$.

Assume we know $p = p_0X + x$, $q = q_0Y + y$ with $0 \le x < X$, $0 \le y < Y$. Then write $t_{ijk}(x, y) = g_{ijk}(p_0X + x, q_0Y + y)$. Consider the lattice of coefficients of $t_{ijk}(xX, yY)$: e.g. (m = 3, a = 2, b = 1)

t ₀₀₀	(U ³									١
t_{100}	*	U^3X								
<i>t</i> ₀₀₁	*	*	$U^2 Y$							
t_{101}	*	*	*	$U^2 X^2$						
t ₀₀₂	*	*	*	*	UY^2					
t_{102}	*	*	*	*	*	UX ³				
t ₀₀₃	*	*	*	*	*	*	Y^3			
t_{103}	*	*	*	*	*	*	*	X^4		
t ₂₀₃	*	*	*	*	*	*	*	*	X^5	
t ₀₁₃	* /	*	*	*	*	*	*	*	*	Y^4

As in the univariate case, if $h(x_0, y_0) \equiv 0 \pmod{\phi}^m$ and $||h(xX, yY)|| < \phi^m / \sqrt{w}$ where *h* has *w* monomials, then $h(x_0, y_0) = 0$ exactly.

As in the univariate case, if $h(x_0, y_0) \equiv 0 \pmod{\phi}^m$ and $||h(xX, yY)|| < \phi^m / \sqrt{w}$ where *h* has *w* monomials, then $h(x_0, y_0) = 0$ exactly. In our case, w = 2m + a + b + 1 (no mixed monomials!). As in the univariate case, if $h(x_0, y_0) \equiv 0 \pmod{\phi}^m$ and $||h(xX, yY)|| < \phi^m / \sqrt{w}$ where *h* has *w* monomials, then $h(x_0, y_0) = 0$ exactly. In our case, w = 2m + a + b + 1 (no mixed monomials!). Complexity (LLL) $O(\log^{12} N)$. As in the univariate case, if $h(x_0, y_0) \equiv 0 \pmod{\phi}^m$ and $||h(xX, yY|| < \phi^m / \sqrt{w}$ where *h* has *w* monomials, then $h(x_0, y_0) = 0$ exactly. In our case, w = 2m + a + b + 1 (no mixed monomials!). Complexity (LLL) $O(\log^{12} N)$. Complexity (LL) $O(\log^9 N)$ (I think!). As in the univariate case, if $h(x_0, y_0) \equiv 0 \pmod{\phi}^m$ and $||h(xX, yY|| < \phi^m / \sqrt{w}$ where *h* has *w* monomials, then $h(x_0, y_0) = 0$ exactly. In our case, w = 2m + a + b + 1 (no mixed monomials!). Complexity (LLL) $O(\log^{12} N)$. Complexity (LL) $O(\log^9 N)$ (I think!). *Roughly speaking* the difference in complexity comes from the fact that we are doing 2-D guessing for *p* and *q*.

Just to remind you that this is trivial (no lattices)

Just to remind you that this is trivial (no lattices) Suppose $ed = 1 + k\phi(N)$, and approximate k by k' = (ed - 1)/N. Then $0 \le k - k' \le 6$, and we test all: $O(\log^2 N)$.

A different scenario

Let's not assume we know the secret exponent.

Let's *not* assume we know the secret exponent. Let's consider the case of IP (an industry standard) packets being transmitted with low-exponent RSA encryption. Let's not assume we know the secret exponent.

Let's consider the case of IP (an industry standard) packets being transmitted with low-exponent RSA encryption.

Our aim now is to recover *individual messages* rather than break the key as such.

Figure: IP datagram, showing the fields in the IP header

0 1 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 Version IHL |Type of Service| Total Length Identification |Flags| Fragment Offset Time to Live | Protocol | Header Checksum Source Address Destination Address

Checksum = $-\sum w_i \pmod{65535}$: w_i the 16-bit words in the header.

Assume an IP packet m is sent as $m^d \pmod{N}$ for some small exponent d. If we can, e.g. denial of service, get two transmissions, where the identification differs by c, we have $m^d \pmod{N}$ and

$$(m + (2^{48} - 1)c2^{72})^d \pmod{N}$$

(assuming no checksum wrapping).

Assume an IP packet m is sent as $m^d \pmod{N}$ for some small exponent d. If we can, e.g. denial of service, get two transmissions, where the identification differs by c, we have $m^d \pmod{N}$ and

$$(m + (2^{48} - 1)c2^{72})^d \pmod{N}$$

(assuming no checksum wrapping). Eliminating *m* gives a degree d^2 equation in *c*, where $c < 2^{16}$. In fact, this is a degree *d* equation in c^d . Assume an IP packet m is sent as $m^d \pmod{N}$ for some small exponent d. If we can, e.g. denial of service, get two transmissions, where the identification differs by c, we have $m^d \pmod{N}$ and

$$(m + (2^{48} - 1)c2^{72})^d \pmod{N}$$

(assuming no checksum wrapping). Eliminating *m* gives a degree d^2 equation in *c*, where $c < 2^{16}$. In fact, this is a degree *d* equation in c^d . Checksum wrapping gives us

$$(m + ((2^{48} - 1)c - 1) 2^{72})^d \pmod{N}$$

again a degree d^2 equation in c, but this doesn't collapse.

NTL Timings in seconds to lattice reduce RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public e		e=3		e=5			
RSA-type	wrapping	512	1024	2048	512	1024	2048
IP	Without	2	9	27	8068**	177	1386
	With	653	3413	3976	†	793465	§

† Not implemented due to software restrictions.

** Taking $\alpha \leq 2^{11}$ allowed h = 2, with e = 5 this formed a 10x10 matrix which reduced in 19 seconds.

Since $19\times32\ll8068,$ this illustrates the power of guessing high-order bits.

NTL Timings in seconds to lattice reduce RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public e		e=3		e=5			
RSA-type	wrapping	512	1024	2048	512	1024	2048
IP	Without	2	9	27	8068**	177	1386
	With	653	3413	3976	†	793465	§

[†] Not implemented due to software restrictions.

** Taking $\alpha \leq 2^{11}$ allowed h = 2, with e = 5 this formed a 10x10 matrix which reduced in 19 seconds.

Since $19\times32\ll8068,$ this illustrates the power of guessing high-order bits.

Once we have c, we recover m by a resultant calculation.

References

P.A. Crouch and J.H. Davenport.

Lattice Attacks on RSA-Encrypted IP and TCP.

In B. Honary, editor, *Proceedings 8th. IMA Conf. Cryptography and Coding*, pages 329–338, 2001.

🧾 J.-S. Coron and A. May.

Deterministic Polynomial-Time Equivalence of Computing the RSA Secret Key and Factoring.

J. Cryptology, 20:39–50, 2007.

N.A. Howgrave-Graham.

Finding Small Roots of Univariate Modular Equations Revisited. *Cryptography and Coding (Ed. M. Darnell)*, pages 131–142, 1997.

N.A. Howgrave-Graham.

Approximate Integer Common Divisors.

In J.H. Silverman, editor, *Proceedings CaLC 2001*, pages 51–66, 2001