
What does “without loss of generality” mean
(and how do we detect it)

James Davenport
Hebron & Medlock Professor of Information Technology1

University of Bath (U.K.)

1 August 2016

1Thanks to Matthew England and SC2: H2020-FETOPEN-2016-2017-CSA
project 712689: www.sc-square.org

www.sc-square.org


Concepts

1 Given a symmetric formula in a, b, c , the mathematician says
“without loss of generality a ≤ b ≤ c”

2 Given a geometric figure in the plane, the mathematician says
“without loss of generality P is at (0, 0) and Q at (0, 1)”

3 And there’s more general “reasoning by symmetry”.

See [Har09] for an excellent treatment of making such proofs
formal: pause this talk focuses on detection



Possible meanings of w.l.o.g. [Har09]

A: non-degeneracy for example “w.l.o.g. α 6= 0”, really means
“α = 0 is a special case, which you can easily see for
yourself, so I am not going to bother with it here”;

B: exploitation of symmetry as in Schur’s inequality
∀a, b, c ∈ R, k ∈ N,

0 ≤ak(a−b)(a−c) +bk(b−a)(b−c) +ck(c−a)(c−b),

where a typical proof might begin: “Without loss of
generality, let a ≤ b ≤ c”.

But also C: “α = 0 renders the result meaningless, so we shall
not consider it further”.



1: “without loss of generality a ≤ b ≤ c”

Works if the formula is invariant under Sn acting on the n
variables

Isn’t that a lot of checking?

Proposition

The permutations (1, 2, . . . , n) and (1, 2) generate Sn as a group
acting on {1, 2, . . . , n}.

Hence it’s sufficient to check that these two permutations leave
the formula mathematically invariant (syntactic invariance is too
strong a condition)



Does this help SC2?

Feeding 0 ≤ a2(a− b)(a− c) + b2(b− a)(b− c) + c2(c − a)(c − b)
into Regular Chains [CM14] CAD, we get 31 cells: 14 satisfy
a ≤ b ≤ c , either totally, or, where underlined, only partially

Table: Cells satisfying a ≤ b ≤ c

c < 0 b < c all
b = c a < c ; a = c

c = 0 b < 0 a < b; a = b
b = 0 a < 0; a = 0

c > 0 b < 0 all
b = 0 a < c

0 < b < c all
b = c a < 0; a = 0; 0 < a < c ; a = c

Splitting the “undecided” cells gives us 18/39, again a far cry from
the näıve 1/6.



What if it’s only a subset of the variables?

Proposition

The permutations (1, 2), (1, 3) . . . (1, n) generate Sn as a group
acting on {1, 2, . . . , n}.

Hence the obvious greedy algorithm will find as many Sk as act,
separately, on the n variables.



2: “without loss of generality P is at . . . ”

Depends on the symmetry group acting on (what we guess might
be) a geometric configuration

Theorem (Simson’s Theorem, [Wan96, Mou16])

Let D be on the circumcircle of the triangle ABC, let P, Q and R
be the points of AB, AC and BC where the line to D is
perpendicular. Then P, Q and R are collinear.

Let us consider just the first statement “Let D be on the
circumcircle of the triangle ABC”.



This coordinatises to

xD
2 + yD

2 =

xD
(
xA

2yB − xA
2yC − xB

2yA + xB
2yC + xC

2yA − xC
2yB + yA

2yB
−yA2yC − yA yB

2 + yA yC
2 + yB

2yC − yB yC
2
)

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB

+

yD
(
−xA

(
xB

2 + yB
2
)

+ xA
(
xC

2 + yC
2
)

+
xA

2 (xB − xC ) + yA
2 (xB − xC )− xB

(
xC

2 + yC
2
)

+ xC
(
xB

2 + yB
2
))

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB
+

1
4

(xA2yB−xA
2yC−xB

2yA+xB
2yC+xC

2yA−xC
2yB+yA

2yB−yA
2yC−yA yB

2+yA yC
2+yB

2yC−yB yC
2)2

(xA yB−xA yC−xB yA+xB yC+xC yA−xC yB )
2 +

1
4

(−xA (xB 2+yB
2)+xA (xC 2+yC

2)+xA
2(xB−xC )+yA

2(xB−xC )−xB (xC 2+yC
2)+xC (xB 2+yB

2))2

(xA yB−xA yC−xB yA+xB yC+xC yA−xC yB )
2 −xA − 1

2

xA
2yB − xA

2yC − xB
2yA + xB

2yC + xC
2yA − xC

2yB+
yA

2yB − yA
2yC − yA yB

2 + yA yC
2 + yB

2yC − yB yC
2

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB


2

−

yA + 1
2

−xA
(
xB

2 + yB
2
)

+ xA
(
xC

2 + yC
2
)

+ xA
2 (xB − xC ) +

yA
2 (xB − xC )− xB

(
xC

2 + yC
2
)

+ xC
(
xB

2 + yB
2
)

xA yB − xA yC − xB yA + xB yC + xC yA − xC yB


2



CAS can verify invariance under z → z + c for all
variables, so choose yA = 0

xD
2 + yD

2 =
xD
(
xA

2yB − xA
2yC + xB

2yC − xC
2yB + yB

2yC − yB yC
2
)

xA yB − xA yC + xB yC − xC yB
+

yD

yD − xA
(
xB

2 + yB
2
)

+ xA
(
xC

2 + yC
2
)

+ xA
2 (xB − xC )−

xB
(
xC

2 + yC
2
)

+ xC
(
xB

2 + yB
2
)

xA yB − xA yC + xB yC − xC yB
+

1

4

(
xA

2yB − xA
2yC + xB

2yC − xC
2yB + yB

2yC − yB yC
2
)2

(xA yB − xA yC + xB yC − xC yB)2
−(

xA −
1

2

xA
2yB − xA

2yC + xB
2yC − xC

2yB + yB
2yC − yB yC

2

xA yB − xA yC + xB yC − xC yB

)2



CAS can verify invariance under z → z + c for
z ∈ {xA, xB , xc , xD}, so choose xA = 0

xD
2 + yD

2 =
xD
(
xB

2yC − xC
2yB + yB

2yC − yB yC
2
)

xB yC − xC yB
+

yD
(
−xB

(
xC

2 + yC
2
)

+ xC
(
xB

2 + yB
2
))

xB yC − xC yB

We see dramatic simplification of the formulae.



Rotational Symmetry

In fact, both [Wan96, Mou16] coordinatise with A = (xA, 0) and
B = (−xA, 0), taking (implicit) advantage of the fact that the
problem is invariant under translation (so we can place the
midpoint of AB at (0, 0)) and rotation (so we can place A and B
on the x-axis).

xD
2 + yD

2 =
yD
(
−xA2 + xC

2 + yC
2
)

yC
+ xA

2

One further step, which [Wan96, Mou16] could have done, and a
computer system could certainly spot, is that the equation is
homogeneous, and hence we can pick, say, xA = 1.
However, whilst appearing to be a type B w.l.o.g., exploiting
symmetry under dilation, it is also asserting xA 6= 0, thus a type A,
or even type C, w.l.o.g. as well.



Does this help SC2?: the data

Table: CAD of Rn for numerators of equations

[CM14] [McC84, EWBD14]
Equation Cells Time Memory Cells Time Memory

(secs) MiB (secs) MiB
Base 591 4.12 341

1D trans 591 2.80 235 — > 9000
2D trans 591 2.29 188 36531* 807.00 55000
2D|xB=1 319 3.48 256 30803* 433.20 31460

2D|xB=16 319 3.53 290
2D|xB=256 319 4.24 318

2D,rot 107 0.47 26 589* 3.89 303
2D,rot|xA=1 37 0.14 11 245 1.86 108

Timings and memory usage from Maple’s CodeTools[Usage], and
hence both have (up to) four significant figures.
∗ Warning that the input is not well-oriented.



Does this help SC2?: the commentary

[CM14] Spotting the translational symmetry doesn’t simplify
the result (i.e. the geometry is preserved), but helps
somewhat with time/memory.

+ Spotting rotational symmetry definitely helps (fewer
cells and some things align vertically)

+ Spotting scaling definitely helps (more by eliminating
the degenerate case)

[EWBD14] Translational symmetry seems necessary Why?

+ Rotation is very important

+ Scaling also helps



How might we spot it?’

1D trans Check for invariance under z → z + c for all variables
z simultaneously?

Cheap provided it’s all the variables; otherwise subsets

2D trans Check (half of) possible subsets of variables for
z → z + c invariance (Call these xi )

3D trans If there’s room check subsets of the rest for
z → z + c invariance

2D rotation For all pairings xi , yσ(i), check invariance under
∀i(xi , yσ(i))→ (cxi − syσ(i), cyσ(i) + sxi ) (with
c2 + s2 = 1)

or 3D similarly if we have 3D translational invariance

scaling Obvious way (but what about the degenerate case?)

N.B. we need to know about the translations to deduce
the rotations, even if not computationally useful



3: “reasoning by symmetry”

This occurs in [BD07], we construct a formula with 3n + O(1)

quantifiers defining S :=
{

2k−1
22n+1 : 0 < k < 22

n
}

: each point

requires 2O(n) bits to express, but there are 22
n

of them
[BD07] assert that an explicit representation of S takes 22

n+O(n)

bits, but S is symmetric about x = 1
2 , and that half is symmetric

about x = 1
4 etc., leading in principle to a 2O(n)-bit representation

Put another way, we don’t need to count the solutions individually
there’s a better solution to the #SMT problem
This doesn’t help (asymptotically) with [DH88], where some

solutions require 22
O(n)

bits to represent, but the ideas might be
useful



Conclusions

It is possible to spot symmetry of the Sn type reasonably
cheaply: O(n2) tests

Translational symmetry is relatively easy to spot, but per se
doesn’t seem to help [CM14] CAD much

However, it’s a precursor to spotting rotational symmetry,
which is useful

Scaling is also useful, but we need to worry about the
degenerate case

All useful heuristics!



Bibliography I

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

C. Chen and M. Moreno Maza.
”an incremental algorithm for computing cylindrical algebraic
decompositions”.
In Ruyong Feng, Wen-shin Lee, and Yosuke Sato, editors,
Computer Mathematics, pages 199–221. Springer Berlin
Heidelberg, 2014.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.



Bibliography II

M. England, D.J. Wilson, R. Bradford, and J.H. Davenport.
Using the Regular Chains Library to build cylindrical algebraic
decompositions by projecting and lifting.
In Proceedings ICMS 2014, pages 458–465, 2014.

J. Harrison.
Without Loss of Generality.
International Conference on Theorem Proving in Higher Order
Logics, pages 43–59, 2009.

S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic
Decomposition.
PhD thesis, University of Wisconsin-Madison Computer
Science, 1984.



Bibliography III

C. Mou.
Software library for triangular decompositions.
Talk at ICMS 2016, 2016.

D. Wang.
GEOTHER: A geometry theorem prover.
International Conference on Automated Deduction, pages
166–170, 1996.


