
The Rôle of Benchmarking in Symbolic
Computation

(Position Paper)

James Davenport
Thanks to Alessandro Cimatti for the SMT graphs

University of Bath

21 September 2018

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 1 / 26

Structure

1 Summary

2 The sparse weakness of complexity theory

3 Benchmarking against problem sets

4 Conclusions

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 2 / 26

There is little doubt that, in the minds of most symbolic
computation researchers, the ideal paper consists of a problem
statement, a new algorithm, a complexity analysis and preferably a
few validating examples. There are many such great papers. This
paradigm has served computer algebra well for many years, and
indeed continues to do so where it is applicable. However, it is
much less applicable to sparse problems, where there are many
NP-hardness results, or to many problems coming from algebraic
geometry, where the worst-case complexity seems to be rare.
We argue that, in these cases, the field should take a leaf out of
the practices of the SAT-solving community, and adopt systematic
benchmarking, and benchmarking contests, as a way measuring
(and stimulating) progress. This would involve a change of culture.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 3 / 26

Complexity Theory

Symbolic computation was an early beneficiary [Knu69] of rigorous
complexity theory. This led to the paradigm that the ideal paper
consists of a problem statement, a new algorithm, a complexity
analysis and preferably a few validating examples. There are many
such great papers [Bro71, Col67, LLL82].
This works fairly well for dense polynomials, where complexity is a
function of degree (and coefficient length), but essentially all
algebra systems implement sparse polynomials, at least “sparse in
coefficient”.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 4 / 26

Multiplication

Open Problem ([Roc18, Problem 1])

Develop an algorithm to multiply two sparse polynomials
f , g ∈ R[x] using Õ (t logD) ring and bit operations, where t is
the number of terms in f , g and fg , and D is an upper bound on
their degree.

Provided R is Z or similar, we can almost solve this: Õ
(
t̂ logD

)
where t̂ is the number of terms in f , g and a generic f̂ ĝ , where f̂
has the same exponents as f etc. In other words, a “no
cancellation” version of fg .
I think this is reasonable: if t is much less than t̂ it means there’s
been a great deal of cancellation in this case..

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 5 / 26

Division 1

The example of xn−1
x−1 = xn−1 + · · · x + 1 shows that we need to

consider the number of terms in the output, as well as in the input.

Open Problem ([Roc18, Problem 2])

Given two sparse polynomials f , g ∈ R[x], develop an algorithm to
compute the quotient and remainder q, r ∈ R[x] such that
f = qg + r , using Õ (t logD) ring and bit operations, where t is
the number of terms in f , g and q and r , and deg f < D.

Not “nearly in reach” when g is sparse — when g is dense we
compute powers of x modulo g .
Even the decision problem “does g divide f exactly” is unknown,
and this is key to verifying some modular algorithms.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 6 / 26

Division 2

Open Problem ([DC10, Challenge 3])

Either

find a class of problems for which the problem “does g divide
f?” is NP-complete; or

find an algorithm for the divisibility of polynomials which is
polynomial-time.

A weaker version of this might be to exclude the (possibly scaled)
cyclotomics: again unknown.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 7 / 26

Greatest Common Divisors 1

Again it is necessary to consider output size, as the neat example
of [Sch03] shows:

gcd(xpq − 1, xp+q − xp − xq + 1) = xp+q−1 − xp+q−2 ± · · · − 1.

Most of the classic results in this are are due to Plaisted
[Pla77, Pla78, Pla84], as in the following result.

Theorem ([Pla78])

It is NP-hard to determine whether two sparse polynomials (in the
standard encoding) have a non-trivial common divisor.

Of course, there aren’t that many ways of proving things NP-hard.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 8 / 26

Greatest Common Divisors 2

The basic device of the proofs is to encode the NP-
complete problem of 3-satisfiability so that a formula W
in n Boolean variables goes to a sparse polynomial pM(W)
which vanishes exactly at certain Mth roots of unity corre-
sponding to the satisfiable assignments to the formula W ,
where M is the product of the first n primes. [MR
85j:68043]

But, of course, not all n-SAT problems are hard: just enough of
them!

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 9 / 26

Greatest Common Divisors 3: non cyclotomics

All known hard cases seem to involve(versions of) xn − 1.

Open Problem ([DC10, Challenge 2])

Either

find a class of problems for which the g.c.d. problem is still
NP-complete even when cyclotomic factors are explicitly
encoded (see paper APpendix A); or

find an algorithm for the g.c.d. of polynomials with no
cyclotomic factors, which is polynomial-time in the standard
encoding.

As this is undecided, the state of the art seems to be that even the
decision problem (output size one bit) for greatest common
divisors can be NP-hard on some (probably rare) problems.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 10 / 26

Polynomial Factorization: Square-free

Practically all known polynomial factorization algorithms begin by
doing a square-free decomposition, and this is also hard in theory.

Theorem ([KS99])

Over Z and in the standard sparse encoding, the two problems

1 deciding if a polynomial is square-free

2 deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Plaisted’s Theorem, determining
square-freeness is hard, at least when polynomials with cyclotomic
factors are involved.
In practice, I think we’ll always do a square-free.
Please prove me wrong!

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 11 / 26

Polynomial Factorization: Dense

Even in the dense case, very little is known about the worst-case
complexity of polynomial factorization (beyond the fact that it’s in
P [LLL82]), due to the existence of Swinnerton-Dyer polynomials
(those that factor compatibly modulo every prime, but are
irreducible). Since almost all polynomials are irreducible in the
sense that ∀d > 0

lim
H→∞

|{such polynomials that factor}|
|{polynomials of degree d , coefficients ≤ H}|

= 0, (1)

typical-case complexity isn’t helpful.
Hence polynomial factorization papers nearly always rely on a set
of examples to demonstrate their superiority (e.g. [Wan78] drawing
on [Cla76]). Hardware progress (as well as some algorithmic
improvements) have made this particular set of problems trivial,
and there doesn’t seem to be an agreed corpus of hard problems.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 12 / 26

Polynomial Factorization: Sparse

Again cyclotomics are a nuisance.

Open Problem ([Roc18, Problem 7])

Suppose f ∈ Z[x] is a t-sparse polynomial with at least one sparse
factor g ∈ Z[x] with at most s nonzero terms. In polynomial-time
in t, s, logH(f) and log deg f , find any s-sparse factor of f .

Note that “iterate will find all”, doesn’t work, as f /g might be
(probably will be) less sparse.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 13 / 26

Polynomial Factorization: Sparse, low degree

Here the situation is somewhat better.

Lemma (Gap Lemma [Len99])

“If f ∈ F [x] can be written as f = f0 + xk f1, where the gap
k − deg f0 is large, then every non-cyclotomic low-degree factor of
f is a factor of both f0 and f1.”

This is one of the few “life is better without cyclotomics” genuine
theorems

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 14 / 26

Multivariate Problems

Both [DC10, Roc18] dealt largely with univariates.
A dense polynomial of degree D in n variables has (D + 1)n terms.
While it would be nice to be polynomial in “t, n, logD”, I’d settle
for “polynomial in t, n,D” (and I expect many system-builders
would).
This allows algorithms such as [Zip93] for multivariate
g.c.d./factoring.
Though these are still lacking hard analysis, I suspect they are
O(D(logD)3), and it is probably worth being this detailed

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 15 / 26

Are there alternatives to complexity theory

The SAT/SMT community could show us some: [Cim18] did.
Major features

Lots of examples

Assume we don’t get them all right, and allow a limited time
budget

Include “Virtual Best Solver”, i.e. what the per-problem best
solver can do

* This is basically “state of the art”

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 16 / 26

One Graph: [Cim18, Slide 55]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NRA) -- SAT+UNSAT Benchmarks (no-meti-tarski)

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 17 / 26

Comparison: [Cim18, Slides 55,73]

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

SMT(NRA) -- SAT+UNSAT Benchmarks (no-meti-tarski)

MathSAT
CVC4

Z3
Yices

SMT-RAT
dReal
iSAT3

virtual-best

 20

 40

 60

 80

 100

 120

 140

 0.01 0.1 1 10 100 1000

#
 o

f
in

s
ta

n
c
e
s

time

VMT(NTA) -- Safe+Unsafe Benchmarks

IncreLin-nuXmv
StaticLin-nuXmv

K-induction-NTA-MathSAT
K-induction-NTA-dReal

BMC-NTA-MathSAT
BMC-NTA-dReal

virtual-best

Nearly all solved by VBS Many unsolved
VBS a lot (?20%) better VBS scarcely better
Pick up tricks from the others Look at unsolved problems
Note that 10-100 seconds is fine, which meets the “get a cup of
coffee” requirement [BS12]

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 18 / 26

How to explore: scatter plots [Cim18]

SAT examples UNSAT examples

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Y
ic

e
s

MathSAT

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Y
ic

e
s

MathSAT

There’s a lot of scatter!
On UNSAT, MathSAT is often ×10 faster.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 19 / 26

Conclusions

1 Complexity theory has served us well

2 But it has its limits, especially in the presence of NP-hardness

3 Other fields (SAT, SMT) handle this differently
[BDG17, Cim18]

4 But for this we need large corpora of problems, both “hard”
and “typical”

5 And a better (and more honest) benchmarking methodology

6 Contests certainly haven’t hurt SAT

7 But these evolve, unlike “Top 500”, which has hurt HPC
[Don16, ?].

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 20 / 26

Bibliography I

M.N. Brain, J.H. Davenport, and A. Griggio.
Benchmarking Solvers, SAT-style.
SC2 2017 Satisfiability Checking and Symbolic Computation
CEUR Workshop, 1974(RP3):1–15, 2017.
URL: http://ceur-ws.org/Vol-1974/RP3.pdf.

W.S. Brown.
On Euclid’s Algorithm and the Computation of Polynomial
Greatest Common Divisors.
J. ACM, 18:478–504, 1971.

Martin Brain and Florian Schanda.
A lightweight technique for distributed and incremental
verification.
In Rajeev Joshi, Peter Müller, and Andreas Podelski, editors,
Verified Software: Theories, Tools, Experiments, volume 7152
of LNCS, pages 114–129. Springer, January 2012.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 21 / 26

http://ceur-ws.org/Vol-1974/RP3.pdf

Bibliography II

doi:10.1007/978-3-642-27705-4_10.

A. Cimatti.
Incremental Linearization for Satisfiability and Verification
Modulo Nonlinear Arithmetic and Transcendental Functions.
Presentation at SYNASC 2018, 2018.

B.G. Claybrook.
Factorization of multivariate polynomials over the integers.
SIGSAM Bulletin, 10:13–13, 1976.

G.E. Collins.
Subresultants and Reduced Polynomial Remainder Sequences.
J. ACM, 14:128–142, 1967.

J.H. Davenport and J. Carette.
The Sparsity Challenges.
In S. Watt et al., editor, Proceedings SYNASC 2009, pages
3–7, 2010.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 22 / 26

http://dx.doi.org/10.1007/978-3-642-27705-4_10

Bibliography III

J.J. Dongarra.
Report on the Sunway TaihuLight System.
http://www.netlib.org/utk/people/JackDongarra/

PAPERS/sunway-report-2016.pdf, 2016.

D.E. Knuth.
The Art of Computer Programming, Vol. II, Seminumerical
Algorithms.
Addison-Wesley, 1969.

M. Karpinski and I. Shparlinski.
On the Computational Hardness of Testing Square-Freeness of
Sparse Polynomials.
In M. Fossorier, H. Imai, S. Lin, and A. Poli, editors,
Proceedings AAECC-13, pages 492–497, 1999.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 23 / 26

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

Bibliography IV

H.W. Lenstra Jr.
Finding small degree factors of lacunary polynomials.
Number theory in progress, pages 267–276, 1999.

A.K. Lenstra, H.W. Lenstra Jun., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., 261:515–534, 1982.

D.A. Plaisted.
Sparse Complex Polynomials and Irreducibility.
J. Comp. Syst. Sci., 14:210–221, 1977.

D.A. Plaisted.
Some Polynomial and Integer Divisibility Problems are
NP-Hard.
SIAM J. Comp., 7:458–464, 1978.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 24 / 26

Bibliography V

D.A. Plaisted.
New NP-Hard and NP-Complete Polynomial and Integer
Divisibility Problems.
Theor. Comp. Sci., 31:125–138, 1984.

D.S. Roche.
What Can (and Can’t) we Do with Sparse Polynomials?
In Proceedings ISSAC 2018, pages 25–30, 2018.

A. Schinzel.
On the greatest common divisor of two univariate polynomials,
I.
In A Panorama of number theory or the view from Baker’s
garden, pages 337–352. C.U.P., 2003.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 25 / 26

Bibliography VI

P.S. Wang.
An Improved Multivariable Polynomial Factorising Algorithm.
Math. Comp., 32:1215–1231, 1978.

R.E. Zippel.
Effective Polynomial Computation.
Kluwer Academic Publishers, 1993.

James Davenport (Bath) Rôle of Benchmarking in Symbolic Computation 26 / 26

