
The Sparsity Challenges

James Davenport & Jacques Carette

University of Bath, McMaster University
(both visiting Waterloo)

26 September 2009



Notation

For a polynomial f :

df is the degree of f

tf is the number of non-zero terms in f

∣f ∣ is the largest absolute value of a coefficient

tf /(df + 1) is a measure of the sparsity of a polynomial



Notation

For a polynomial f :

df is the degree of f

tf is the number of non-zero terms in f

∣f ∣ is the largest absolute value of a coefficient

tf /(df + 1) is a measure of the sparsity of a polynomial



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations

, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations

, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



Setting: Typical Textbooks

▶ Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

▶ Carefully explain good algorithms for adding and multiplying
sparse polynomials;

▶ Go on to discuss division, gcd, factorization etc.,

!! while silently switching to dense thinking.

This is the sparsity challenge!



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder,

or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



More precisely: the sparsity challenges

Each operation presents its own peculiarities

division with/without remainder, or a divisibility test only.

gcd or a test for relative primality

square-free decomposition or a test for square-freeness

factorization or a test for irreducibility

others e.g. polynomial decomposition — does
f (x) = g(h(x))?

but there are some common difficulties



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



The cyclotomic polynomials

Cn = xn − 1

Φn =
n∏

k = 1
gcd(k , n) = 1

(
x − e2�ik/n

)

Cn(x) =
∏
d ∣n

Φd(x)

Φn(x) =
∏
d ∣n

Cd(x)�(n/d)

where � is the Möbius function.



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840
∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840
∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840
∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840
∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840

∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Φk is surprising

Φp(x) = xp−1 + ⋅ ⋅ ⋅+ x + 1

Φ6(x) = x2 − x + 1; Φ10(x) = x4 − x3 + x2 − x + 1

But Φ105(x) = x48 ± ⋅ ⋅ ⋅ − 2x41 ⋅ ⋅ ⋅ 2x7 ⋅ ⋅ ⋅ 1

Table: Large coefficients in Φk

∣ai ∣ 2 3 4 5 6 7 8=9
first Φk 105 385 1365 1785 2805 3135 6545
�(k) 48 240 576 768 1280 1440 3840
∣ai ∣ 14 23 25 27 59 359
first Φk 10465 11305 17225 20615 26565 40755
�(k) 6336 6912 10752 12960 10560 17280



Challenge 1

Find useful bounds on the number of terms in non-cyclotomic
factors of sparse polynomials.

Note that Bremner has a trinomial which factors as two dense
degree 7 polynomials.
Is this as bad as it gets?



Challenge 1

Find useful bounds on the number of terms in non-cyclotomic
factors of sparse polynomials.
Note that Bremner has a trinomial which factors as two dense
degree 7 polynomials.

Is this as bad as it gets?



Challenge 1

Find useful bounds on the number of terms in non-cyclotomic
factors of sparse polynomials.
Note that Bremner has a trinomial which factors as two dense
degree 7 polynomials.
Is this as bad as it gets?



Cn/Φk is difficult

▶ Factoring Cn requires factoring n, but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n,

but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n,

but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n, but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n, but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n, but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult

▶ Factoring Cn requires factoring n, but the output will be
lengthy

▶ Writing down just the degrees of the factors of Cn still
requires factoring n

▶ Various results of Plaisted

Also xn Asking for all decomposition of xn means writing down all
factors of n



Cn/Φk is difficult: Plaisted

Theorem (Plaisted)

It is NP-hard to determine whether two sparse polynomials (in the
standard encoding) have a non-trivial common divisor.

The basic device of the proofs is to encode the
NP-complete problem of 3-satisfiability so that a
formula W in n Boolean variables goes to a sparse
polynomial pM(W ) which vanishes exactly at certain
Mth roots of unity corresponding to the satisfiable
assignments to the formula W , where M is the product
of the first n primes. [MR 85j:68043]



Cn/Φk is difficult: Plaisted

Theorem (Plaisted)

It is NP-hard to determine whether two sparse polynomials (in the
standard encoding) have a non-trivial common divisor.

The basic device of the proofs is to encode the
NP-complete problem of 3-satisfiability so that a
formula W in n Boolean variables goes to a sparse
polynomial pM(W ) which vanishes exactly at certain
Mth roots of unity corresponding to the satisfiable
assignments to the formula W , where M is the product
of the first n primes. [MR 85j:68043]



Cn/Φk is difficult: Plaisted

Theorem (Plaisted)

It is NP-hard to determine whether two sparse polynomials (in the
standard encoding) have a non-trivial common divisor.

The basic device of the proofs is to encode the
NP-complete problem of 3-satisfiability so that a
formula W in n Boolean variables goes to a sparse
polynomial pM(W ) which vanishes exactly at certain
Mth roots of unity corresponding to the satisfiable
assignments to the formula W , where M is the product
of the first n primes. [MR 85j:68043]



Challenge 2

Either

▶ find a class of problems for which the gcd problem is still
NP-complete even when cyclotomic factors are encoded as Cn

(or Φk); or

▶ find an algorithm for the gcd of polynomials with no
cyclotomic factors, which is polynomial-time in the standard
encoding.



Challenge 2

Either

▶ find a class of problems for which the gcd problem is still
NP-complete even when cyclotomic factors are encoded as Cn

(or Φk); or

▶ find an algorithm for the gcd of polynomials with no
cyclotomic factors, which is polynomial-time in the standard
encoding.



Challenge 2

Either

▶ find a class of problems for which the gcd problem is still
NP-complete even when cyclotomic factors are encoded as Cn

(or Φk); or

▶ find an algorithm for the gcd of polynomials with no
cyclotomic factors, which is polynomial-time in the standard
encoding.



Cn/Φk can be disguised

There are “scaled cyclotomics” such as

x105 − 2105 = 2105C105(x/2)

A partial answer to the cyclotomics problem is to admit Cn (or Φk)
as elements in our output vocabulary.



Cn/Φk can be disguised

There are “scaled cyclotomics” such as

x105 − 2105 = 2105C105(x/2)

A partial answer to the cyclotomics problem is to admit Cn (or Φk)
as elements in our output vocabulary.



Cn/Φk can be disguised

There are “scaled cyclotomics” such as

x105 − 2105 = 2105C105(x/2)

A partial answer to the cyclotomics problem is to admit Cn (or Φk)
as elements in our output vocabulary.



Types of challenges

▶ The output may not be sparse

▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse

▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder

▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem

▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm

as in the case of gcd
of polynomials with no cyclotomic factors



Types of challenges

▶ The output may not be sparse
▶ ‘dumb’, e.g. quotient with remainder
▶ ‘degenerate’, where we have encoded a different problem
▶ ‘unknown’, where we expect sparsity most of the time

▶ The problem may be intrinsically hard — e.g. Plaisted

▶ We may just not know a good algorithm as in the case of gcd
of polynomials with no cyclotomic factors



Division: f /g

With remainder:

very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth! Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth!

Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth!

Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth!

Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth!

Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth! Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth! Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth! Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth

and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Division: f /g

With remainder: very bad

▶ Näıvely O(d2
f tg ) exponent comparisons

▶ Better O(df tg log df ) exponent comparisons

▶ Coefficient growth! Consider x1000/(x − 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

▶ In the standard model, dependence on df is inevitable:
(xn − 1)/(x − 1).



Challenge 3

Find an algorithm for exact division of f by g which is
polynomial-time in tf , tg and tf /g .

This plus challenge 1 (bounds on term count) would be a real
breakthrough



Challenge 3

Find an algorithm for exact division of f by g which is
polynomial-time in tf , tg and tf /g .
This plus challenge 1 (bounds on term count) would be a real
breakthrough



Exact Divisibility

Theorem (Plaisted)

The following problem is NP-hard: given an integer N and a set
{p1(x), . . . , pk(x)} of sparse polynomials with integer coefficients,
to determine whether xN − 1 divides

∏k
j=1 pj(x).

Again, the proof is based on 3-SAT. Note, however, that the
product may be dense, so we shouldn’t quite give up hope here.



Exact Divisibility

Theorem (Plaisted)

The following problem is NP-hard: given an integer N and a set
{p1(x), . . . , pk(x)} of sparse polynomials with integer coefficients,
to determine whether xN − 1 divides

∏k
j=1 pj(x).

Again, the proof is based on 3-SAT.

Note, however, that the
product may be dense, so we shouldn’t quite give up hope here.



Exact Divisibility

Theorem (Plaisted)

The following problem is NP-hard: given an integer N and a set
{p1(x), . . . , pk(x)} of sparse polynomials with integer coefficients,
to determine whether xN − 1 divides

∏k
j=1 pj(x).

Again, the proof is based on 3-SAT. Note, however, that the
product may be dense, so we shouldn’t quite give up hope here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Challenge 4

Either

▶ find a class of problems for which the simple problem “does g
divide f ?” is still NP-complete; or

▶ find an algorithm for the divisibility of polynomials which is
polynomial-time.

Failing this

▶ find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.



Greatest Common Divisor

Plaisted’s theorem shows that there are hard cases here.



Greatest Common Divisor

Plaisted’s theorem shows that there are hard cases here.



Challenge 5

As a special case of Challenge 1 we can ask the following.

Find useful bounds on the number of terms in the greatest
common divisor of sparse polynomials.
Failing this, one might ask for such a bound for non-cyclotomic
factors.



Challenge 5

As a special case of Challenge 1 we can ask the following.
Find useful bounds on the number of terms in the greatest
common divisor of sparse polynomials.

Failing this, one might ask for such a bound for non-cyclotomic
factors.



Challenge 5

As a special case of Challenge 1 we can ask the following.
Find useful bounds on the number of terms in the greatest
common divisor of sparse polynomials.
Failing this, one might ask for such a bound for non-cyclotomic
factors.



Challenge 6

By analogy with Challenge 3, we can also pose the following.

Find an algorithm for computing gcd(f , g) which is
polynomial-time in tf , tg and tgcd(f ,g).
Again, we might restrict ourselves to the non-cyclotomic case.



Challenge 6

By analogy with Challenge 3, we can also pose the following.
Find an algorithm for computing gcd(f , g) which is
polynomial-time in tf , tg and tgcd(f ,g).

Again, we might restrict ourselves to the non-cyclotomic case.



Challenge 6

By analogy with Challenge 3, we can also pose the following.
Find an algorithm for computing gcd(f , g) which is
polynomial-time in tf , tg and tgcd(f ,g).
Again, we might restrict ourselves to the non-cyclotomic case.



Square-free decomposition
We know this can be done by gcd, but in fact they are equivalent

Theorem (KarpinskiShparlinski1999)

Over Z and in the standard encoding, the two problems

1. deciding if a polynomial is square-free

2. deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness is
hard, at least when polynomials with cyclotomic factors are
involved.
A fortiori , computing the square-free decomposition is hard, at
least when cyclotomics are involved. This is certainly the case if we
want a full decomposition in the standard model, as the trivial
example of

xp+1 − xp − x + 1 = (x − 1)2(xp−1 + ⋅ ⋅ ⋅+ 1) (1)

shows.



Square-free decomposition
We know this can be done by gcd, but in fact they are equivalent

Theorem (KarpinskiShparlinski1999)

Over Z and in the standard encoding, the two problems

1. deciding if a polynomial is square-free

2. deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness is
hard, at least when polynomials with cyclotomic factors are
involved.
A fortiori , computing the square-free decomposition is hard, at
least when cyclotomics are involved. This is certainly the case if we
want a full decomposition in the standard model, as the trivial
example of

xp+1 − xp − x + 1 = (x − 1)2(xp−1 + ⋅ ⋅ ⋅+ 1) (1)

shows.



Square-free decomposition
We know this can be done by gcd, but in fact they are equivalent

Theorem (KarpinskiShparlinski1999)

Over Z and in the standard encoding, the two problems

1. deciding if a polynomial is square-free

2. deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness is
hard, at least when polynomials with cyclotomic factors are
involved.

A fortiori , computing the square-free decomposition is hard, at
least when cyclotomics are involved. This is certainly the case if we
want a full decomposition in the standard model, as the trivial
example of

xp+1 − xp − x + 1 = (x − 1)2(xp−1 + ⋅ ⋅ ⋅+ 1) (1)

shows.



Square-free decomposition
We know this can be done by gcd, but in fact they are equivalent

Theorem (KarpinskiShparlinski1999)

Over Z and in the standard encoding, the two problems

1. deciding if a polynomial is square-free

2. deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness is
hard, at least when polynomials with cyclotomic factors are
involved.
A fortiori , computing the square-free decomposition is hard, at
least when cyclotomics are involved. This is certainly the case if we
want a full decomposition in the standard model, as the trivial
example of

xp+1 − xp − x + 1 = (x − 1)2(xp−1 + ⋅ ⋅ ⋅+ 1) (1)

shows.



Challenge 6a

Find a polynomial-time algorithm for the shape of the square-free
decomposition of a sparse polynomial.

We might also ask about the square-free decomposition of
cyclotomic-free polynomials.
Note, however, various results about polynomials which get sparser
when we square them



Challenge 6a

Find a polynomial-time algorithm for the shape of the square-free
decomposition of a sparse polynomial.
We might also ask about the square-free decomposition of
cyclotomic-free polynomials.

Note, however, various results about polynomials which get sparser
when we square them



Challenge 6a

Find a polynomial-time algorithm for the shape of the square-free
decomposition of a sparse polynomial.
We might also ask about the square-free decomposition of
cyclotomic-free polynomials.
Note, however, various results about polynomials which get sparser
when we square them



Perfect Powers

However, a positive result for the standard representation in this
area is provided by Giesbrecht & Roche, who give a Las Vegas
polynomial-time algorithm for determining whether a given sparse
f (not of the form xn, else the number of possibilities is potentially
vast) is hr , and r itself.

One obvious question is whether h has to be sparse if f is. They
conjecture that it does: more precisely the following.

Conjecture (GiesbrechtRoche2008a)

For r , s ∈ N and h ∈ Z[z ] with dh = s, then t̂hi < t̂hr + r for
1 ≤ i < n, where t̂f = tf(mod x2s).

Assuming this conjecture, they can recover h in polynomial time.



Perfect Powers

However, a positive result for the standard representation in this
area is provided by Giesbrecht & Roche, who give a Las Vegas
polynomial-time algorithm for determining whether a given sparse
f (not of the form xn, else the number of possibilities is potentially
vast) is hr , and r itself.
One obvious question is whether h has to be sparse if f is. They
conjecture that it does: more precisely the following.

Conjecture (GiesbrechtRoche2008a)

For r , s ∈ N and h ∈ Z[z ] with dh = s, then t̂hi < t̂hr + r for
1 ≤ i < n, where t̂f = tf(mod x2s).

Assuming this conjecture, they can recover h in polynomial time.



Perfect Powers

However, a positive result for the standard representation in this
area is provided by Giesbrecht & Roche, who give a Las Vegas
polynomial-time algorithm for determining whether a given sparse
f (not of the form xn, else the number of possibilities is potentially
vast) is hr , and r itself.
One obvious question is whether h has to be sparse if f is. They
conjecture that it does: more precisely the following.

Conjecture (GiesbrechtRoche2008a)

For r , s ∈ N and h ∈ Z[z ] with dh = s, then t̂hi < t̂hr + r for
1 ≤ i < n, where t̂f = tf(mod x2s).

Assuming this conjecture, they can recover h in polynomial time.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.

But there is some good news.



Factorization

In the light of

▶ Cyclotomics

▶ Bremner’s polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.



Lenstra’s Theorem

There is a deterministic algorithm that, for some positive real
number c , has the following property: given an algebraic number
field K , a sparsely represented non-zero polunomial f ∈ K [x ] and a
positive integer d , the algorithm finds all monic irreducible factors
of f in K [x ] of degree at most d , as well as their multiplicities, and
it spends time at most (l + d)c , where l denotes the length of the
input data (i.e. tf log(df ∣f ∣))



Challenge 7

Understand the complexity of this result in practice.

In particular, we would like to know the value of c in the special
case when K is Q.
Also, (l + d)c is a very neat formulation, but the dependencies on
d and l are probably different in reality.



Challenge 7

Understand the complexity of this result in practice.
In particular, we would like to know the value of c in the special
case when K is Q.

Also, (l + d)c is a very neat formulation, but the dependencies on
d and l are probably different in reality.



Challenge 7

Understand the complexity of this result in practice.
In particular, we would like to know the value of c in the special
case when K is Q.
Also, (l + d)c is a very neat formulation, but the dependencies on
d and l are probably different in reality.



Polynomial Decomposition

i.e. is f (x) = g(h(x))? The case g(x) = xd is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form axn + b, then dg ≤ 2tf (tf − 1)

Theorem (Zannier2008)

There exists a computable function ℬ such that if g , h ∈ C[x ] are
non-constant polynomials with f (x) = g(h(x)), then th ≤ ℬ(tf ).

In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f (x) = g(h(x)).
Some cancellation is certainly possible, though



Polynomial Decomposition

i.e. is f (x) = g(h(x))? The case g(x) = xd is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form axn + b, then dg ≤ 2tf (tf − 1)

Theorem (Zannier2008)

There exists a computable function ℬ such that if g , h ∈ C[x ] are
non-constant polynomials with f (x) = g(h(x)), then th ≤ ℬ(tf ).

In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f (x) = g(h(x)).
Some cancellation is certainly possible, though



Polynomial Decomposition

i.e. is f (x) = g(h(x))? The case g(x) = xd is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form axn + b, then dg ≤ 2tf (tf − 1)

Theorem (Zannier2008)

There exists a computable function ℬ such that if g , h ∈ C[x ] are
non-constant polynomials with f (x) = g(h(x)), then th ≤ ℬ(tf ).

In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f (x) = g(h(x)).
Some cancellation is certainly possible, though



Polynomial Decomposition

i.e. is f (x) = g(h(x))? The case g(x) = xd is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form axn + b, then dg ≤ 2tf (tf − 1)

Theorem (Zannier2008)

There exists a computable function ℬ such that if g , h ∈ C[x ] are
non-constant polynomials with f (x) = g(h(x)), then th ≤ ℬ(tf ).

In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f (x) = g(h(x)).

Some cancellation is certainly possible, though



Polynomial Decomposition

i.e. is f (x) = g(h(x))? The case g(x) = xd is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form axn + b, then dg ≤ 2tf (tf − 1)

Theorem (Zannier2008)

There exists a computable function ℬ such that if g , h ∈ C[x ] are
non-constant polynomials with f (x) = g(h(x)), then th ≤ ℬ(tf ).

In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in
f (x) = g(h(x)).
Some cancellation is certainly possible, though



Challenge 8

Understand the complexity of this result in practice.


