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Background

Thirty years ago [SS83b, and others] showed that many
problems of robot motion planning can be reduced to
Cylindrical Algebraic Decomposition.

28 years ago, I tried to do this [Dav86]

!! and failed spectacularly

There has been lots of progress since then, Moore’s Law etc.
on the hardware front,

and at least as much on the software front

So What happens if we try again?
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The specimen problem

(they don’t come much simpler than this!)
Can we get the ladder from 1 to 2?

1

2

Figure: The piano movers problem considered in [Dav86]
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What space are we in?

Real In this case R2 = {(x , y)} a point in space

Configuration In this case R4 = {(x , y ,w , z)} positions of the two
ends of the ladder.

’’ Manifold R4/〈(x − w)2 + (y − z)2 = 9〉 as above allowing for
the length of the ladder

Possibly R2 × S1 = {(x , y , θ)} an end-point in space and an
orientation

Isomorphic w = x + 3 cos θ; z = y + 3 sin θ.
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Cylindrical Algebraic Decomposition

Originally due to Collins [Col75]

Input Polynomials Pn = {p1, . . . , pk} ⊂ R[x1, . . . , xn]

Output Decompose Rn into disjoint connected cells Di such
that

Useful Each cell has an explicit sample point

Relevant Each pi has a constant sign on each cell

Cyl. ∀m < n πm(Di ), πm(Dj) are either equal or disjoint, where
πm is projection onto the first m coordinates
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Initial Method (outline)

Pn → Pn−1 Project on n − 1 variables
... and so on

P2 → P1 Project to univariate polynomials

Isolate All the roots of P1, which is a c.a.d. of R1

Lift To a c.a.d. of R2 sign-invariant for P2
... and so on

Lift To a c.a.d. of Rn sign-invariant for Pn
In practice, lifting is by far the most expensive part
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Davenport’s formulation [Dav86]

(x , y) and (w , z) are the two ends of the ladder
(Configuration space)[

(x − w)2 + (y − z)2 − 9 = 0
]

∧
[
[yz ≥ 0] ∨ [x(y − z)2 + y(w − x)(y − z) ≥ 0]

]
∧
[
[(y − 1)(z − 1) ≥ 0]

∨ [(x + 1)(y − z)2 + (y − 1)(w − x)(y − z) ≥ 0]
]

∧
[
[xw ≥ 0] ∨ [y(x − w)2 + x(z − y)(x − w) ≥ 0]

]
∧
[
[(x + 1)(w + 1) ≥ 0]

∨ [(y − 1)(x − w)2 + (x + 1)(z − y)(x − w) ≥ 0]
]
.

In 1985 (12MB memory) he could do the projection (250
polynomials, of degree ≤ 26) but not the isolation (375 real roots).
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Improvements since 1975

finer projection operators [McC88];

Partial CAD to make use of the quantified structure of a
formula when lifting [CH91];

the use of equational constraints [McC99];

truth-table-invariant CADs to apply equational constraint
techniques more widely [BDE+13];

and an alternative approach to projection and lifting where
the problem is solved in complex space and then refined to a
CAD of real space [CMMXY09].

Today (3.1GHz processor, 8192MB memory) we still can’t
compute this c.a.d.
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Alternative Formulations

[SS83a] A non-c.a.d. method for R2, which does not
generalise

[Wan96] uses “simple reasoning” to deduce that the ladder
cannot traverse the corridor if and only if it intersects
all four walls simultaneously

(b,0)

(0,a)

(d,1)

(-1,c)

Figure: A configuration of a ladder in which all four walls are intersected.
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Wang’s formulation

(∃a)(∃b)(∃c)(∃d)[a2 + b2 = r2 ∧ r > 0

∧ a ≥ 0 ∧ b < 0 ∧ c ≥ 1 ∧ d < −1

∧ c − (1 + b)(c − a) = 0 ∧ d − (1− a)(d − b) = 0].

Due to its simplicity and the small number of free variables (only r
is unquantified) Qepcad can almost instantly deduce that the
maximal length of the ladder is

√
8, using a CAD of 19 cells.

Also (1991) We can use ‘topological reasoning’ to deduce that
three intersections imply four
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Alternative Formulations (II)

[SS83a] A non-c.a.d. method for R2, which does not
generalise

[Wan96] uses “simple reasoning” to deduce that the ladder
cannot traverse the corridor if and only if it intersects
all four walls simultaneously.

Also (1991) We can use ‘topological reasoning’ to deduce that
three intersections imply four

[YZ06] Subtle geometry implies r satisfies

(∀x) 4x8−4(r−3)x6−2(3r−6)x4−2(r−3)x2+1 > 0.

It takes Qepcad 1.936 seconds and 5 cells to return
r2 < 8 ∨ r < 0

These two are in real space, and don’t return a route
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New Formulation: consider the illegal positions

A
B

C

D

In A–C, only one end need be “illegal”

Figure: Four canonical invalid positions of the ladder.
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So invalid regions are

A x < −1 ∧ y > 1 or w < −1 ∧ z > 1: this describes
any collision with the ‘inside’ walls along with the
ladder being on the other side of these.

B x > 0 or w > 0: this includes any collision with the
rightmost wall along with the ladder being on the
other side.

C y < 0 or z < 0: this includes any collision with the
bottommost wall along with the ladder being on the
other side.

D (∃t)[0 < t ∧ t < 1 ∧ x + t(w − x) <
−1 ∧ y + t(z − y) > 1]: this is the condition that
there is any point of the line that lies in the invalid
top-left region.

Valid space is the negation of (A) ∨ (B) ∨ (C ) ∨ (D)
Qepcad (2 seconds) eliminates t from (A) ∨ (B) ∨ (C ) ∨ (D) to
give (A) ∨ (B) ∨ (C ) ∨ (D ′)
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(A) ∨ (B) ∨ (C ) ∨ (D ′)

[y < 0] ∨ [w > 0] ∨ [x > 0] ∨ [z < 0]

∨ [x + 1 < 0 ∧ y − 1 > 0] ∨ [w + 1 < 0 ∧ z − 1 > 0]

∨ [w + 1 < 0 ∧ yw − w + y + x ≥ 0

∧ xz + z − yw + w − y − x > 0]

∨ [yw − w + y + x < 0 ∧ z − 1 > 0

∧ xz + z − yw + w − y − x < 0]

∨ [y − 1 > 0 ∧ yw − w + y + x < 0].

Hence we need[
(x − w)2 + (y − z)2 = 9

]
∧ ¬(the above)

Davenport A “Piano Movers” Problem Reformulated



And the answer is . . . : Qepcad 16,933.701 seconds

x ≤ 0 ∧ y ≥ 0 ∧ w ≤ 0 ∧ z ≥ 0 ∧ (y − z)2 + (x − w)2 = 9

∧
[
[x + 1 ≥ 0 ∧ w + 1 ≥ 0] ∨

[
y − 1 ≤ 0 ∧ w + 1 ≥ 0

∧ y2w2 − 2yw2 + x2w2 + 2xw2 + 2w2 − 2xy2w

+ 4xyw − 2x3w − 4x2w − 4xw + x2y2 − 2x2y

+ x4 + 2x3 − 7x2 − 18x − 9 ≥ 0
]

∨
[
x + 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ w2 − 2xw + y2

− 2y + x2 − 8 > 0 ∧ z − 1 ≤ 0
]

∨
[
x + 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ y2w2 − 2yw2

+ x2w2 + 2xw2 + 2w2 − 2xy2w + 4xyw − 2x3w

− 4x2w − 4xw + x2y2 − 2x2y + x4 + 2x3 − 7x2

− 18x − 9 ≤ 0 ∧ z − 1 ≤ 0
]

∨ [y − 1 ≤ 0 ∧ z − 1 ≤ 0]
]
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If that’s the answer, what does it mean?

Good question (285,419 cells)! The formula can be seen as

general conditions ∧[
bottom corridor ∨ (intermediates)3 ∨ upper corridor

]
and the question is whether cells representing these “intermediate”
positions connect the two corridors.
Need it really be this complicated?
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A two-dimensional CAD of the (x , y) configuration space
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Adjacency

is actually a non-trivial question itself

[ACM84] describe adjacency in 2D, implemented in Qepcad

[ACM88] describe adjacency in 3D

[SS83b] describe adjacency of n and n − 1 dimensional cells

But we have an equational constraint, so need adjacency
of n − 1 and n − 2 dimensional cells
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Why have we got further than [Dav86]?

Intuitively, new formulation has lower degree

Backed up by sotd heuristic on the formulations: 100/33

Not so convincing on the projections: 2006/1693

Over 100 polynomials in P1 in both cases

ndrr [BDEW13] gives 367/301

[Wan96] sotd=19 (98 for projection), ndrr=17

A better heuristic (here!) is “sum of weighted total degree”
(sowtd) —give xi the weight of i (or i/2 if quantified over).
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sowtd

[Dav86] (unquantified): sowtd = 148.

New formulation (unquantified): sowtd = 72.

[Wan96]’s formulation: sowtd = 27.

[YZ06]’s formulation: sowtd = 23.

The sowtd measure gives the right order to these formulations,
and has plausible-looking differences.
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Extensions

We can consider

Ladder’s of different lengths: 3, 2, 5
4 , 3

4

Obtuse angles (No [YZ06] here)

Acute angles (note that [Wan96] is inadequate, as the ladder
can turn round in the corner)

!! Our formulation runs out of time on both of these — we
really benefited from the fact that the walls were aligned with
the axes.

See paper
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Future work

A c.a.d. of Rn is overkill

We only need the manifold (z − w)2 + (y − z)2 = 9, not R4

We only need cells of codimension 0 and 1 on this manifold

Since connectivity through a cell of codimension > 1 is “walking a
tightrope”

Hence Layered Manifold c.a.d. [WE13]
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