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Professor James Davenport (joint work with Erika Ábrahám, Matthew England, Gereon Kremer, Zak Tonks)
New Opportunities for the Formal Proof of Computational Real Geometry?
1 / 13



Provable Solutions?

SAT A satisfying assignment is a proof,

UNSAT we ask for an UNSAT core,

+ and ask a verified SAT solver to demonstrate UNSAT
here

SMT Depends on the ‘T’

QF NRA ∃x1 . . . ∃xnΦ(x1, . . . , xn)

often There is no non-trivial UNSAT core, but the space
partitions into regions with local UNSAT cores, which
may be quite simple.

+? There is no practicable verified QF NRA solver.
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QF NRA Algorithms?

Tarski Complexity infeasible [Tar51], slightly better version
due to Hörmander [Hö05]

Cylindrical Algebraic Decomposition (CAD) [Col75, many
improvements], also solves ∃x1∀x2 · · · etc., therefore
doubly exponential in n [DH88, BD07].

Virtual Term Substitution [Wei88, Kos16]: limited to degree ≤ 3
including recursively.

NLSAT Essentially a refutation-based method [JdM12].

NuCAD Non-Uniform CAD [Bro15].

Cylindrical Algebraic Coverings [ADEK20].
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verified QF NRA solver

Not for want of trying (mostly around Coq).

[Mah07] Implemented CAD in Coq, but didn’t have a proof of
correctness.

Topology enters, particuarly in the improvements.

[CM12] Proved correct an implementation of Hörmander
[Hö05].

� So the feasible is unproven, and the proven is
infeasible.

Also There is no fully-described theory of handling “local
UNSAT cores”, or even a method of finding them.
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Sketch of Cylindrical Algebraic Coverings [ADEK20]

1 Guess a sample point (x1 := s1) then (x2 := s2) until

(x = s, xi = s
(1)
i ) is infeasible

2 Generalise the contradiction at s
(1)
i to rule out all

xi ∈ (l
(1)
i , u

(1)
i )

NB l
(1)
i , u

(1)
i will be roots of resultants/discriminants/lc

3 Choose a sample (x = s, xi = s
(2)
i ), and exclude all

xi ∈ (l
(2)
i , u

(2)
i )

4 Continue until the whole line (s, xi ) is ruled out by

−∞ < l
(2)
i < u

(1)
i < l

(3)
i < u

(2)
i < · · · <∞

5 Looking at the resultants l
(j+1)
i , u

(j)
i and discriminants, extend

s
(1)
i−1 to an interval l

(1)
i−1, u

(1)
i−1

6 Choose a different sample point s
(2)
i−1, and extend that, . . . .

Until Rn is covered by cells of infeasibility.
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Example 1

c1 := (x2 + y2 < 1)∧
c2 := ((x − 4)2 + y2 < 1)

x = −1: c1 is (just) infeasible

x = −2: c1 rules out (−∞,−1)

x = 0 c2 rules out (−∞, 3)

x = 4 c1 rules out (1,∞)

Hence R = (−∞, 3) ∪ (1,∞)
is infeasible

Very like the human proof.
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Example 2

x = 0 c2 rules out (−∞, 1
2 )

x = 4 c1 rules out (1,∞)

x = 3
4 No y satisfies both,

and this extends to
( 1

2 , 1)

x = 1
2 c2 rules out

x = 1 c1 rules out

Hence R is unfeasible
Perhaps not the human proof, but at least understandable.
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Current state

+ We have an implementation of CAC, described in [ADEK20],
and a talk at ICMS on 14 July.

− We don’t have a proper output of the informal reasoning as
above

−− We don’t have a translation of this into tactics for a
theorem-prover

! Collaborators welcome
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Bath is recruiting!

Post-doctoral researcher for three years, ideally starting 1 October
2020 (but can be flexible).
Typical starting salary £39,000.
To work on a joint project with Matthew England on “Pushing
Back the Doubly-Exponential Wall of Cylindrical Algebraic
Decomposition”.
Covid-19 has got in the way of formal advertising, but express
interest to J.H.Davenport@bath.ac.uk
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E. Ábrahám, J.H. Davenport, M. England, and G. Kremer.
Deciding the Consistency of Non-Linear Real Arithmetic
Constraints with a Conflict Driven Search Using Cylindrical
Algebraic Coverings.
http://arxiv.org/abs/2003.05633, 2020.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

C.W. Brown.
Open Non-uniform Cylindrical Algebraic Decompositions.
In Proceedings ISSAC 2015, pages 85–92, 2015.
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