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Notation

We are trying in this project to bridge two communities, that of

1 satisfiability checking (especially “satisfiability modulo
theories”) and

2 symbolic computation, also called computer algebra

The communities have their own technical terms, which we will
distinguish as above
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Satisfiability Checking

k-SAT: checking whether a conjunction of disjunctions with at
most k literals is satisfiable.

The 3-SAT problem is known to be NP-complete [Coo71]

But the Satisfiability Checking [BHvMW09] community has
developed SAT solvers which can successfully handle inputs
with millions of Boolean variables

SAT solvers are in use throughout industry

In the UK, I put my life in the hands of SAT-solver verified
software several times a week

SAT-solving contests [JLBRS12] have driven much progress

“Watched Literals” [MMZ+01] is worth a factor of (k − 2) in
the inner loop

#SAT (counting solutions) is a different problem from SAT
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Complexity Theory

The 3-SAT problem is known to be NP-complete [Coo71]

But what does this mean?
(Assuming P 6=NP)

1 There is no polynomial-time algorithm which will solve all
SAT problems

� But this doesn’t necessarily imply exponential running time
(though we don’t know much better)

2 Any given SAT problem can be solved in polynomial time
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SAT-modulo-theories (SMT) solvers

attempt to extend this pragmatic success to cases where the literals
belong to some theory, rather than being independent Booleans

Substantial progress has been made when the theory is “easy”
[BSST09, KS08]

But even quantifier-free (i.e. purely existential) SMT for

theories of non-linear arithmetic/algebra, real or integer, is
still in its infancy

quantified (i.e. at least one alternation) SMT is currently a
dream

“Despite substantial advances in verification technology,
complexity issues with classical decision procedures are still a major
obstacle for formal verification of real-world applications, e.g. in
automotive and avionic industries.” [PQR09]
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But isn’t this standard computer algebra?

(at least over the reals)

[Col75] solved quantifier elimination for the reals

and computer algebra has made, and is making, a lot of
progress since

it’s in several computer algebra systems

and it’s even possible to eliminate a quantifier on an Android
’phone [Eng14]

Of course, it’s expensive, but we know the problem is
doubly-exponential [BD07]

Over the integers it’s undecidable anyway, so what’s the point?
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But there’s a fundamental difference

Computer Algebra Begins with the polynomials, solves them
completely (Cylindrical Algebraic Decomposition),
then considers the Boolean structure

With some more recent flexibility, e.g. equational
constraints.

Hence we are essentially solving #SMT, rather than SMT

But see single-cell constructions [Bro13, Bro15]

SMT Starts from the Boolean structure, and dips into the
theory, adding and retracting theory clauses as
required
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There’s also a question of strategy

Computer Algebra tends to have a fixed strategy

at least in terms of what is documented: the pre-processing
steps before one gets into the algorithm are rarely
described

Quite often follows a general algorithm even when there’s some
“low hanging fruit”

SAT tends to have lots of heuristics

SAT looks aggressively for low-hanging fruit [Spe15]

SAT Frequently restarts [HH10], with some underpinning
theory [LSZ93]
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Heuristics

In fact,there’s a great deal of choice in CAD “algorithms”.

Variable Order The most obvious one (also present in Gröbner
bases, regular chains etc.)

Often Crucial, in theory [BD07] and in practice
Several heuristics suggested in the past: [HEW+15] shows

that no one heuristic is best, and a machine learning
meta-heuristic outperforms all heuristics

Equational constraints We can only apply one for each variable, so
need to choose

No cheap heuristics: those available do all the projections then
decide which one to lift

TTICAD “Truth Table Invariant CAD”, i.e. trying to take
account of the Boolean structure, has even more
choices

Also No research in trying to make all the choices
holistically.
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Benchmarking, Problem Sets and Contests

Contests are a major factor in progress in SAT. For SMT:

Specification Various different questions: [WBD12] is just CAD
problems, not SMT problems

Maintenance is a problem, see the PoSSo set of GB examples
(only conserved in PDF of LATEX)

Language Not really a standard: we will extend the SMTLib
standard — interested in volunteers/ interfaces;
OpenDreamKit?; OpenMath; MathML-C;

but need a problem statement language as well as just
formulae

Industry Not much current industrial use, so no industry
problems, vicious circle

Hard Problems? Quite a challenge for SAT [Spe15]
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Hard Problems

CAD is known to be doubly-exponential (in n, the number of
variables)

[DH88] Describing a single (non-trivial) solution needs

polynomials of degree 22n/5+O(1)

* So adding ∧0 < x < 1 makes describing a single
solution doubly-exponentially more difficult

[BD07] The solutions are all rational, describable with 2O(n)

bits. But there are 22O(n)
of them, so SMT might be

2O(n) but #SMT 22O(n)

But There is symmetry, and we don’t have to count the
solutions one-by-one, so what is #SMT here?
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Conclusions

We currently have two communities with different

Terminology Minor once you’re aware of it

Approaches Logic-first versus (historically) polynomials-first

Also incremental versus batch

Attitudes Pragmatic contests versus worst-case complexity

Hence problem sets, contests, standards etc.

Industrial links (but currently not very strong for either: SMT can
point to SAT).

So We have a lot of work to do.
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Gröbner bases: [MR13] versus [MM82]

Let r be the dimension of the variety of solutions. Focus on the
degrees of the polynomials (more intrinsic than actual times)

[MR13] modified both lower and upper bounds to show dn
Θ(1)2Θ(r)

lower Essentially, use the r -variable [Yap91] ideal

which encodes an EXPSPACE-complete rewriting problem
into a system of binomials

note that these ideals are definitely not radical
(square-free)

upper A very significant improvement to [Dub90], again
using r rather than n where possible
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What we would like to do (but can’t)

Show radical ideal problems are only singly-exponential in n

This ought to follow from [Kol88]

Show non-radical ideals are rare (non-square-free
polynomials occur with density 0)

However there seems to be no theory of distribution of ideals

Deduce weak worst-case complexity (i.e. apart from an
exponentially-rare subset: [AL15]) of Gröbner bases
is singly exponential
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There’s a catch [Chi09]

Theorem

∀n ≥ n0, d ≥ d0 there are homogeneous f1, . . . , fν ∈ k[x1, . . . , xn]
(ν ≤ n, deg fi ≤ d) and a prime ideal p such that

1 the zeros Z(p) coincides with a component, defined over k, of
Z(f1, . . . , fν), and furthermore Z(f1, . . . , fν) has exactly two
components irreducible over k: Z(p) and linear space;

2 the Hilbert function of p only stabilised after d2Ω(n)
;

3 the maximum degree of any system of generators of p is d2Ω(n)
.

I don’t fully understand the construction: it starts with [Yap91], as
[MR13], but somehow builds a prime ideal inside this, with
embedded high-multiplicity components
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A technical complication, and solution

Making sets of polynomials square-free

, or even irreducible,

is computationally nearly always advantageous

is sometimes required by the theory

but might leave the degree alone, or might replace one polynomial
by O(

√
d) polynomials

hard to control from the point of view of complexity theory.

Solution [McC84] Say that a set of polynomials has the
(M,D) property if it can be partitioned into M sets,
each with combined degree at most D (in each
variable)

This is preserved by taking square-free decompositions etc.

Can Define (M,D) analogously
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Cylindrical Algebraic Decomposition for polynomials

Assume All CADs we encounter are well-oriented [McC84], i.e.
no relevant polynomial vanishes identically on a cell

However there is no theory of distribution of CADs

And Bath has a family of examples which aren’t
well-oriented

And rescuing from failure is doable, but not well-studied

Note [MPP16] says this is no longer relevant

Then if An is the polynomials in n variables, with primitive
irreducible basis Bn, the projection is

An−1 := cont(An) ∪ [P(Bn) := coeff(Bn) ∪ disc(Bn) ∪ res(Bn)]

If An has (M,D) then An−1 has
(
(M + 1)2/2, 2D2

)
Hence doubly-exponential growth in n
The induction (on n) hypothesis is order-invariant decompositions
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Cylindrical Algebraic Decomposition for propositions (1)

Suppose we are tryimg to understand (e.g. quantifier elimination)
a proposition Φ (or set of propositions)

, and f (x) = 0 is a
consequence of Φ (either explicit or implicit), an equational
constraint, and f involves xn and is primitive
Then [Col98] we are only interested in Rn|f (x) = 0, not Rn

So [McC99] let F be an irreducible basis for f , and use
PF (B) := P(F ) ∪ {res(f , b)|f ∈ F , b ∈ B \ F}
This has (2M, 2D2) rather than (O(M2), 2D2), but only produces
a sign-invariant decomposition
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Cylindrical Algebraic Decomposition for propositions (2)

Generalised to P∗
F (B) := PF (B) ∪ disc(B \ F ) [McC01], which

produces an order-invariant decomposition, and has (3M, 2D2)
If f (x) = 0 and g(x) = 0 are both equational constraints, then
resxn(f , g) is also an equational constraint

Suppose we have s equational constraints

And (after resultants) we have a constraint in each of the
last s variables

And these constraints are all primitive

Then [EBD15] we get O
(

ms2n−s
d2n
)

behaviour
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Recent Developments

CASC 2016[ED16] Under the same assumptions,

O
(

ms2n−s
d s2n−s

)
behaviour

using Gröbner bases rather than resultants for the
elimination, but multivariate resultants [BM09] for
the bounds

ICMS 2016[DE16] The primitivity restriction is inherent: we can
write [DH88] in this format, with n − 1 non-primitive
equational constraints

ISSAC2017 [BDE+17] Can do Cylindrical Algebraic Decomposition
in 12 variables with 11 equational constraints
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it’s not R/C: it’s quantifiers (and alternations)

[DH88, BD07] Are really about the combinatorial complexity of

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk))︸ ︷︷ ︸
Lk

⇒ Sk(xk , yk).

We can transpose this to the complexes, and get zero-dimensional
QE examples in Cn with 22O(n)

isolated point solutions, even though
the equations are all linear and the solution set is zero-dimensional.



it’s not R/C: it’s quantifiers (and alternations)

[DH88, BD07] Are really about the combinatorial complexity of

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk))︸ ︷︷ ︸
Lk

⇒ Sk(xk , yk).

We can transpose this to the complexes, and get zero-dimensional
QE examples in Cn with 22O(n)

isolated point solutions, even though
the equations are all linear and the solution set is zero-dimensional.



it’s not R/C: it’s quantifiers (and alternations)

[DH88, BD07] Are really about the combinatorial complexity of

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

((yk−1 = yk ∧ xk = zk) ∨ (yk = zk ∧ xk−1 = xk))︸ ︷︷ ︸
Lk

⇒ Sk(xk , yk).

We can transpose this to the complexes, and get zero-dimensional
QE examples in Cn with 22O(n)

isolated point solutions, even though
the equations are all linear and the solution set is zero-dimensional.



So let’s not be mesmerised by the QE problem

Consider ([BDE+17]) a single semi-algebraic set defined by

f1(x1, . . . , xn−1, k1) = 0 ∧ f2(x1, . . . , xn−1, k1) = 0 ∧ · · ·
fn−1(x1, . . . , xn−1, k1) = 0 ∧ x1 > 0 ∧ · · · ∧ xn−1 > 0

and ask the question “How does the number of solutions vary with
k1?” The fi are multilinear (d = 1 but d = 2, 3, 4) and primitive,
and are pretty “generic”.
Of course, this doesn’t guarantee that all the iterated resultants in
[EBD15], or the Gröbner polynomials in [ED16], are primitive, but
in practice they are.
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