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Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a partition of Rn

into cells arranged cylindrically (meaning their projections are
either equal or disjoint) such that each cell is defined by a
semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell. In some sense, makes
the induced geometry of Rn explicit

Originally motivated for use in quantifier elimination. Have also
been applied directly on problems as diverse as algebraic
simplification and (at least theoretically) robot motion planning.
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Projection and lifting
Collins algorithm has two main phases:
Projection A projection operator is applied repeatedly to the

polynomials, each time producing a new set of
polynomials in one less variable.

Lifting • A CAD of R is produced using the roots of the
univariate polynomials and intervals between.

• Over each cell: the bivariate polynomials are
evaluated at a sample point, a stack is built
consisting of sections (the roots) and sectors (the
intervals). Together these are a CAD of R2.

...
•
• Repeated until a CAD of Rn is constructed.

The projection operator is defined so the CAD is sign-invariant.
James Davenport CAD: Polynomials⇒ Formulae
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Projection example

The projection operator
applied to the sphere
identifies the circle. The
projection operator applied
to the circle identifies two
points on the real line.
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Projection and lifting

Collins algorithm has two main phases:
Projection A projection operator is applied repeatedly to the

polynomials, each time producing a new set of
polynomials in one less variable.

Lifting A CAD of R is produced using the roots of the
univariate polynomials and intervals between.
Over each cell: the bivariate polynomials are
evaluated at a sample point, a stack is built
consisting of sections (the roots) and sectors
(the intervals). Together these are a CAD of R2.

...
Repeated until a CAD of Rn is constructed.

The projection operator is defined so the CAD is sign-invariant.
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Lifting example

A CAD of R2 which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.
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Improvements to CAD

There have been many improvements and extensions to CAD
theory including but not limited to:

Improvements to the sub-algorithms used by Collins.
New projection operators.
Results on complexity of CAD.
CAD tailored to specific problems (notably Virtual Term
Substitution).
Results and algorithms on the adjacency of CAD cells.
CAD via triangular decomposition (see later).
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So how do we project?
(Lifting is in fact relatively straight-forward)

Given polynomials Pn = {pi} in x1, . . . , xn, what should Pn−1 be?
Naïve (Doesn’t work!) Every discxn (pi ), every resxn (pi , pj)

i.e. where the polynomials fold, or cross: misses lots of
“special cases”

[Col75] First enlarge Pn with all its reducta, then naïve plus
the coefficients of Pn (with respect to xn) the
principal subresultant coefficients from the discxn and
resxn calculations

[Hon90] a tidied version of [Col75].
[McC88] Let Bn be a squarefree basis for the primitive parts of

Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every discxn (bi ), resxn (bi , bj) from Bn

[Bro01] Naïve plus leading coefficients (not squarefree!)
James Davenport CAD: Polynomials⇒ Formulae
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Are these projections correct?

[Col75] Yes, and it’s relatively straightforward to prove that,
over a cell in Rn−1 sign-invariant for Pn−1, the
polynomials of Pn do not cross, and define cells
sign-invariant for the polynomials of Pn

[McC88] 52 pages (based on [Zar75]) prove the equivalent
statement, but for order-invariance, not
sign-invariance, provided the polynomials are
well-oriented, a test that has to be applied during
lifting.

But what if they’re not known to be well-oriented?
[McC88] suggests adding all partial derivatives

In practice hope for well-oriented, and if it fails use Hong’s
projection.

[Bro01] Needs well-orientedness and additional checks
James Davenport CAD: Polynomials⇒ Formulae
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What about the complexity?

If the McCallum projection is well-oriented, the complexity is

(2d)n2n+7m2n+4 l3 (1)

versus the original
(2d)22n+8m2n+6 l3 (??)

and in practice the gains in running time can be factors of a
thousand, or, more often, the difference between feasibility and
infeasibility
“Randomly”, well-orientedness ought to occur with probability 1,
but we have a family of “real-world” examples (simplification/
branch cuts) where it often fails
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Need it be this hard?

The Heintz construction

Φk(xk , yk) :=

∃zk∀xk−1yk−1

[
yk−1 = yk ∧ xk−1 = zk ∨ yk−1 = zk ∧ xk−1 = xk

⇒ Φk−1(xk−1, yk−1)

]

If Φ1 ≡ y1 = f (x1), then Φ2 ≡ y2 = f (f (x2)),
Φ3 ≡ y3 = f (f (f (f (x3))))

[DH88] shows Ω
(
22(n−2)/5

)
(using yR + iyI = (xR + ixI)

4)

[BD07] shows Ω
(
22(n−1)/3

)
(using a sawtooth)

Hence doubly exponential is inevitable, but there’s a lot of room!
In fact, there are theoretical algorithms which are
singly-exponential in n, but doubly-exponential in the number of
∃∀ alternations
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CAD of a formula

Most applications of CAD relate not just to polynomials, but
formulae containing them. A key approach to improving CAD is to
take the structure of these formulae into account.
PartialCAD The input is a quantified formula rather than the

polynomials within. Stack construction terminates
early if the value of the quantified formula on the
whole stack is already apparent. lifting

CAD with equational constraint The input is a formula and
equation logically implied by the formula. The
projection operator is modified so that the other
polynomials are guaranteed sign invariant only on
those cells of the CAD where the equational
constraint is satisfied. projection+
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Truth invariance

A CAD is truth-invariant with respect to a formula if the formula
has constant truth value on each cell. Such a CAD could in theory
be produced using far fewer cells than a CAD sign-invariant for the
polynomials involved.

Brown employed truth invariance to simplify sign-invariant
CADs / PartialCADs.
The use of a reduced projection operator with respect to an
equational constraint produces a CAD which is not
sign-invariant but truth-invariant.
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Truth-table invariance

Given a sequence of quantifier free formulae (QFF) we define a
truth table invariant CAD (TTICAD) as a CAD such that each
formulae has constant truth value on each cell.

We gave [BDE+13] an algorithm to construct TTICADs for
sequences of formulae which each has an equational constraint.
This:

will (in general) produce far fewer cells than the sign-invariant
CAD for the polynomials involved;
does not require calculation of the sign-invariant CAD first.

We achieve this by extending the theory of equational constraints.

The algorithm has been implemented in Maple and shows
promising experimental results.
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Simple motivating example

Consider the polynomials:

f1 := x2 + y2 − 1 g1 := xy − 1
4

f2 := (x − 4)2 + (y − 1)2 − 1 g2 := (x − 4)(y − 1)− 1
4

We wish to find the regions of R2 where the formula Φ is true:

Φ := (f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0)

We could solve the problem using a full sign-invariant CAD for
{f1, g1, f2, g2), Qepcad and Maple would both use 317 cells.
This identified 20 points on the real line.
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Example: graph of polynomials
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Example: sign-invariant CAD

All curve intersections identified.
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Simple motivating example continued

We could instead employ the theory of equational constraints.

Although Φ has no explicit equational constraint the equation
f1f2 = 0 is implied implicitly.

Using the functionality in Qepcad this gives a CAD with 249
cells. This identifies 16 points on the real line.
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Example: CAD with equational constraint
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New projection operator for TTICAD

Let A = {Ai}ti=1 be a list of irreducible bases for the polynomials in
a sequence of QFFs and E = {Ei}ti=1 non-empty subsets Ei ⊆ Ai .

We define the reduced projection of A with respect to E , as:

PE(A) :=
⋃t

i=1PEi (Ai ) ∪ Res×(E)

where

PEi (Ai ) = P(Ei ) ∪ {resxn (e, a)}e∈Ei , a∈Ai\Ei

P(A) = {disc(a), coeffsxn (a), resxn (a, b)}a,b∈A

Res×(E) = {resxn (e, ê) | ∃i , j : e ∈ Ei , ê ∈ Ej , i < j , e 6= ê}
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Using the operator to build a TTICAD

Full technical details of our algorithm to produce a TTICAD of Rn

are given in [BDE+13], along with a formal verification.
Key points:

Apply the reduced projection once to find projection
polynomials P in n − 1 variables.
Use McCallum’s verified algorithm to build a sign-invariant
CAD of Rn−1 for P.
Perform a final lift with respect to the equational constraints.
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Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).
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Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

All three CADs together.
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Example: TTICAD

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).

TTICAD only
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Important technicalities

We highlight a couple of important technicalities:
1 We used McCallum’s algorithm to produce the CAD of Rn−1

as this gives a CAD which is order-invariant.
This stronger condition is required to conclude that the
output of our algorithm is a TTICAD.

2 McCallum’s operator and hence his algorithm are only valid
for use when the input is well-oriented, (finite number of
nullification points for all projection polynomials).

3 Hence our new projection operator and algorithm requires a
similar condition:

A is well oriented with respect to E if the equational constraints
have a finite number of nullification points and P is well-oriented.
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Implementations

There are various existing implementations of CAD including
Qepcad, Maple, Mathematica. But none output
order-invariant CADs.

We built our own implementation on Maple. Developed a
package ProjectionCAD for use in Maple 16 on. Available to
download freely from: http://opus.bath.ac.uk/35636/

Can produce CADs sign-invariant (using McCallum or Collins’
operators), order invariant, with equational constraint and
truth-table invariant. Also provides heuristics for formulation.
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Experiments I

First compared our implementation of TTICAD with our
implementation of sign-invariant CAD using McCallum’s operator.

TTICAD cell counts and timings usually an order of
magnitude lower.
One example with the same cell count: the equational
constraint occurred as a projection factor of the projection set
for the other constraints.
Two examples where a sign-invariant CAD could be
constructed while a TTICAD cannot: an equational constraint
was nullified.
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Experiments II

[BDE+13] compared our TTICAD implementation with
Qepcad-B (v1.59), Maple (v16) and Mathematica (v9).

Mathematica certainly the quickest although TTICAD often
produces fewer cells. Mathematica produces cylindrical
formulae rather than CADs and uses powerful heuristics.
TTICAD usually produces far fewer cells than Qepcad or
Maple, even when Qepcad produces partial CADs.
Some examples of theoretical failure for TTICAD where others
complete.
Timings vary according to example. TTICAD competing well
with Qepcad and Maple, but usually slower.
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Further Developments (submitted)

Can we widen the input specification to allow some QFFs without
equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

Naïvely If a gj > 0 occurs ∧ with fi = 0, the only polynomial involving
gj we need is res(fi , gj).
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Generalising our example

Assume x ≺ y and for j a non-negative integer define

fj+1 := (x − 4j)2 + (y − j)2 − 1,

gj+1 := (x − 4j) ∗ (y − j)− 1
4 ,

Fj+1 := {fk , gk}k=1...j+1

Φj+1 :=
j+1∨
k=1

(fk = 0 ∧ gk < 0),

Ψj+1 :=

 j∨
k=1

(fk = 0 ∧ gk < 0)

 ∨ (fj+1 < 0 ∧ gj+1 < 0).

So Ψ does not have an implicit equational constraint
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Cells Counts

j Φi Fj Ψ

ECCAD TTICAD Qepcad CADFull TTICAD Qepcad
2 145 105 249 317 183 317
3 237 157 508 695 259 695
4 329 209 849 1241 335 1241
5 421 261 1269 1979 411 1979
6 513 313 1769 2933 487 2933

ECCAD and TTICAD both seem linear in j , while CADFull is
quadratic.
Forj ≥ 5 TTICAD on Ψ even beats ECCAD on Φ.
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An alternative approach [CMMXY09, CMM12]

Proceed via the complex numbers,

Rn Rn

Cn Cn

Rn−1 Rn−1

R1 R1

Projection Lifting

CCD

RRI

Do a complex cylindrical decomposition via Regular Chains
James Davenport CAD: Polynomials⇒ Formulae
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Example Complex CD

root

c = 0

b = 0

2x = 0 2x 6= 0

b 6= 0

p = 0 p 6= 0

c 6= 0

b2 − 4c = 0

2x + b = 0 2x + b 6= 0

b2 − 4c 6= 0

p = 0 p 6= 0

Figure: Complete complex cylindrical tree for the general monic
quadratic equation, p := x2 + bx + c, under variable ordering c ≺ b ≺ x .

Note that b = 0 is only tested where relevantJames Davenport CAD: Polynomials⇒ Formulae
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Experiments

From: www.cs.bath.ac.uk/~djw42/RCTTICADexamples.txt

RC-TTICAD RC-Inc-CAD Mma Qepcad SyNRAC Redlog
[BCD+14] [CMM12]

Problem n Cells Time Cells Time Time Cells Time Cells Time
MontesS10 7 3643 19.1 3643 28.3 T/O T/O — — T/O Err —
Wang 93 5 507 44.4 507 49.1 897.1 FAIL — Err — Err —
Rose 3 3069 200.9 7075 498.8 T/O FAIL — — T/O Err —
gLS-3-2 11 222821 3087.5 — T/O T/O FAIL — Err — Err —
BC-P-4 4 543 1.6 2007 13.6 11.9 51763 8.6

In all these cases Redlog gave an error, and an old version of
SyNRAC gave an error or timed out. Full details, including many
cases where Mathematica did well, are in [BCD+14]

James Davenport CAD: Polynomials⇒ Formulae
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Conclusions

TTICAD theory offers great advantages over both
sign-invariant CAD and CAD with equational constraint.
Allows for an unoptimised Maple implementation to compete
with the state of the art.
The timings for our implementation could certainly be
improved using established techniques.
Preferable would probably be the incorporation of TTICAD
into the well-established software.
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Future Algorithmic Work

Can we use improved projection at more than the first level /
make use of more than one equational constraint from a QFF?
Can we avoid unnecessary lifting if the truth of a clause is
already known?
What can be done (for Projection/Lifting) when the input is
not well-oriented? Note that Regular Chains doesn’t have this
issue.
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So how do I use these tools?

That’s actually a very good question: there’s a lot of choice in how
to phrase the question

1 Choice of variable ordering (where permitted)
2 Choice of equalities
3 Choice of overall technology (Projection/Regular Chains/. . . )
4 Choice of how the problem is posed
5 (including Gröbner pre-conditioning)
� Choice of software: no software has (even close to) all the

techniques, and each has extra “features”
These are not independent questions
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How might this look? Wilson’s thesis

James Davenport CAD: Polynomials⇒ Formulae



Introduction
Developing TTICAD
TTICAD in Practice

Conclusions etc.

Conclusions
Bibliography

R.J. Bradford, C. Chen, J.H. Davenport, M. England,
M. Moreno Maza, and D.J. Wilson.
Truth Table Invariant Cylindrical Algebraic Decomposition by
Regular Chains.
In Proceedings CASC 2014, pages 44–58, 2014.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

James Davenport CAD: Polynomials⇒ Formulae



Introduction
Developing TTICAD
TTICAD in Practice

Conclusions etc.

Conclusions
Bibliography

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Cylindrical Algebraic Decompositions for Boolean
Combinations.
In Proceedings ISSAC 2013, pages 125–132, 2013.

C.W. Brown.
Improved Projection for Cylindrical Algebraic Decomposition.
J. Symbolic Comp., 32:447–465, 2001.

C. Chen and M. Moreno Maza.
An Incremental Algorithm for Computing Cylindrical Algebraic
Decompositions.
http://arxiv.org/abs/1210.5543, 2012.

James Davenport CAD: Polynomials⇒ Formulae

http://arxiv.org/abs/1210.5543


Introduction
Developing TTICAD
TTICAD in Practice

Conclusions etc.

Conclusions
Bibliography

C. Chen, M. Moreno Maza, B. Xia, and L. Yang.
Computing Cylindrical Algebraic Decomposition via Triangular
Decomposition.
In J. May, editor, Proceedings ISSAC 2009, pages 95–102,
2009.
G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

James Davenport CAD: Polynomials⇒ Formulae



Introduction
Developing TTICAD
TTICAD in Practice

Conclusions etc.

Conclusions
Bibliography

H. Hong.
Improvements in CAD-Based Quantifier Elimination.
PhD thesis, OSU-CISRC-10/90-TR29 Ohio State University,
1990.
S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic
Decomposition of Three-dimensional Space.
J. Symbolic Comp., 5:141–161, 1988.

O. Zariski.
On equimultiple subvarieties of algebaric hypersurfaces.
Proc. Nat. Acad. Sci. USA, 72:1425–1426, 1975.

James Davenport CAD: Polynomials⇒ Formulae


	Introduction
	Cylindrical Algebraic Decomposition
	CAD for Boolean Combinations

	Developing TTICAD
	Motivation
	New Projection Operator
	Important Technicalities

	TTICAD in Practice
	Implementation in Maple
	Experimental Results
	Beyond equational constraints
	Regular Chains CAD

	Conclusions etc.
	Conclusions
	Bibliography


