
Computer Algebra and the

three ‘E’s:

Efficiency, Elegance and

Expressivenes

James H. Davenport & John Fitch

Department of Computer Science

University of Bath

Bath BA2 7AY England

{J.H.Davenport,J.P.Fitch}@bath.ac.uk

June 29, 2007

We all want (as users) or claim to provide (as

designers) the three ‘E’s

• Elegance

• Expressiveness

• Efficiency

1

Elegance (of input)

−b +
√

b2 − 4ac

2a
(1)

\frac{-b+\sqrt{b^2-4ac}}{2a}

(-b+SQRT(b^2-4*a*c))/(2*a)

(/ (+ (- b) (SQRT (- (^ b 2) (* 4 a c)))) (* 2 a))

(divide (plus (minus b) (sqrt (minus (power b 2)

(times 4 a c))))

(times 2 a))

2

But is this a real issue?

1. There is so much going on (MathUI) that
the visual should cease to be a problem.

• “I don’t mind editing XML as long as I
don’t have to look at it”.

2. It is nice to have automatic n-arisation, es-
pecially with lists:
’gcd’/[content(p,x) for p in l]> is nice.

3. Especially if the system can do ’early abort’
on finding 1, as in Axiom.

• Rest becomes ‘expressiveness’.

3

Elegance (of output)
This is a real issue.

Who can wade through the 100s of pages our
system can produce at the drop of a hat?

Users This is a system issue, not a language
issue.

Programmers Do need proper support in the
language to support debugging, with I/O
in their types, not the macine types in
which they are implemented. Interpreted
languages tend to provide this, compiled
ones not (but Axiom did!).

4

Expressiveness

Of course, we really want

−b±
√

b2 − 4ac

2a
. (2)

• Easy — just extend the operators.

• Often appropriate: v/||v||.

• But not the panacea it seems.

5

1

6

3
√
−108 c + 12

√
12 b3 + 81 c2

−
2b

3
√
−108 c + 12

√
12 b3 + 81 c2

,

is apparently 36-valued. Even(
λx.

1

6
x −

2b

x

)
3
√
−108 c + 12

√
12 b3 + 81 c2

is apparently six-valued.

6

Expressiveness needs types
(JHD only; JPff disagrees)

• If the elements of my matrix come from a
commutative ring, I want you to multiply
the matrices . . .

• and calculate the determinant.

• What do you mean: “division by a zero
divisor”!

No known type system is powerful enough!

7

Efficiency: what is special about us?

• There’s no credit for being the second to
do a computation.

* But the same is true of the rest of compu-
tational science.

• My data are so large.

* Bet Google’s eigenvalue problem is bigger
than yours!

8

The dynamic range

Gaussian elimination in sparse matrices

• Dodgson/Bareiss fraction-free

• With special sparsity hacks

• The entries might be very large

• or they might be integers, mostly very small

At one extreme, I’ll tolerate any overhead, at

the other I want byte-packing for most of the

entries.
9

How does this manifest itself?

• Early Maple’s ’polynomial gcd by evalua-

tion’.

* Integers are fast, Z[x]/(p) isn’t.

• Code bloat.

• Axiom’s ’special case compilation’.

• Singular’s hack for exponent packing.

* But they’re safe!

10

Questions to think about

(almost all related!)

• Where is the kernel boundary?

• How will I get efficiency when the objects

are small/fast?

• Are my efficiency hacks safe?

* If not, should I be in this game at all?

• Are there efficiency hacks that could be

safe/semi-safe?

11

• Now, where was that swamp I was menat

to drain?

* (with thanks to Fred Brooks)

