Computer Algebra and the
three ‘E’\textquotesingle s:
Efficiency, Elegance and
Expressiveness

James H. Davenport & John Fitch
Department of Computer Science
University of Bath
Bath BA2 7AY England
\{J.H.Davenport,J.P.Fitch\}@bath.ac.uk

June 29, 2007
We all want (as users) or claim to provide (as designers) the three ‘E’s

- Elegance
- Expressiveness
- Efficiency
Elegance (of input)

\[
\frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]

(1)

\[
\frac{-b + \sqrt{b^2 - 4ac}}{2a}
\]

\(-b + SQRT(b^2 - 4*a*c))/(2*a)

\((-b+SQRT(b^2-4*a*c))/(2*a)\)

\((-b+SQRT(b^2-4*a*c))/(2*a)\)

(\(divide\ (plus\ (minus\ b)\ (sqrt\ (minus\ (power\ b\ 2)\ (*\ 4\ a\ c))))\)\ (*\ 2\ a))

(divide (plus (minus b) (sqrt (minus (power b 2) (times 4 a c)))) (* 2 a))

(divide (plus (minus b) (sqrt (minus (power b 2) (times 4 a c)))) (* 2 a))
But is this a real issue?

1. There is so much going on (MathUI) that the visual should cease to be a problem.
 • “I don’t mind editing XML as long as I don’t have to look at it”.

2. It is nice to have automatic n-arisation, especially with lists:
 \[\text{gcd}'/[\text{content}(p,x) \text{ for } p \text{ in } l] > \text{ is nice.} \]

3. Especially if the system can do ’early abort’ on finding 1, as in Axiom.
 • Rest becomes ‘expressiveness’.
Elegance (of output)
 This is a real issue.

Who can wade through the 100s of pages our system can produce at the drop of a hat?

Users This is a *system* issue, not a *language* issue.

Programmers Do need proper support in the language to support debugging, with I/O in *their* types, not the machine types in which they are implemented. Interpreted languages tend to provide this, compiled ones not (but Axiom did!).
Expressiveness

Of course, we really want

\[\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. \] (2)

• Easy — just extend the operators.
• Often appropriate: \(v/\|v\| \).
• But not the panacea it seems.
\[
\frac{1}{6} \sqrt[3]{-108c + 12\sqrt{12b^3 + 81c^2}} - \frac{2b}{\sqrt[3]{-108c + 12\sqrt{12b^3 + 81c^2}}},
\]

is apparently 36-valued. Even

\[
\left(\lambda x. \frac{1}{6} x - \frac{2b}{x}\right)^3 \sqrt[3]{-108c + 12\sqrt{12b^3 + 81c^2}}
\]

is apparently six-valued.
Expressiveness needs types
(JHD only; JPff disagrees)

• If the elements of my matrix come from a commutative ring, I want you to multiply the matrices ...

• and calculate the determinant.

• What do you mean: “division by a zero divisor”!

No known type system is powerful enough!
Efficiency: what is special about us?

• There’s no credit for being the second to do a computation.

* But the same is true of the rest of computational science.

• My data are so large.

* Bet Google’s eigenvalue problem is bigger than yours!
The dynamic range
Gaussian elimination in sparse matrices

- Dodgson/Bareiss fraction-free
- With special sparsity hacks
- The entries might be very large
- or they might be integers, mostly very small

At one extreme, I’ll tolerate any overhead, at the other I want byte-packing for most of the entries.
How does this manifest itself?

• Early Maple’s ’polynomial gcd by evaluation’.

* Integers are fast, $\mathbb{Z}[x]/(p)$ isn’t.

• Code bloat.

• Axiom’s ’special case compilation’.

• Singular’s hack for exponent packing.

* But they’re safe!
Questions to think about
(almost all related!)

• Where is the kernel boundary?

• How will I get efficiency when the objects are small/fast?

• Are my efficiency hacks safe?

* If not, should I be in this game at all?

• Are there efficiency hacks that could be safe/semi-safe?
Now, where was that swamp I was menat to drain?

* (with thanks to Fred Brooks)