
Sparse Polynomials
The Power of Vocabulary

Professor James Davenport

University of Bath
(visiting Waterloo)

Discussions with Carette (McMaster) & Giesbrecht/Roche (Waterloo) gratefully
acknowledged

28 April 2009

Introduction (1)

The complexity of a problem can depend on the representations of
the inputs, and outputs.

We are all familiar with simple examples: unary/binary;
unsorted/sorted etc.
What about polynomials? We are particularly interested in
divisibility questions (gcd, factoring etc.).

Introduction (1)

The complexity of a problem can depend on the representations of
the inputs, and outputs.
We are all familiar with simple examples: unary/binary;
unsorted/sorted etc.

What about polynomials? We are particularly interested in
divisibility questions (gcd, factoring etc.).

Introduction (1)

The complexity of a problem can depend on the representations of
the inputs, and outputs.
We are all familiar with simple examples: unary/binary;
unsorted/sorted etc.
What about polynomials?

We are particularly interested in
divisibility questions (gcd, factoring etc.).

Introduction (1)

The complexity of a problem can depend on the representations of
the inputs, and outputs.
We are all familiar with simple examples: unary/binary;
unsorted/sorted etc.
What about polynomials? We are particularly interested in
divisibility questions (gcd, factoring etc.).

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.

Additive Complexity What is the minimal number of ± needed to
write f ?

(Univariate) polynomials: f =
∑n

i=0 ai with H = max |ai |

dense 〈n, an, . . . , a0〉: log2 n + (n + 1) log2 H.

t-sparse 〈t, 〈e1, ae1〉, . . . , 〈et , aet 〉〉 with aei 6= 0, ei > ei+1:
log2 t + t(log2 n + log2 H).

Factored f =
∏k

j=1 f
nj

j , fj square-free, relatively prime.

(there’s also “completely factored”)

SLP=DAG si = x or constant or sj ⊗ sk : j , k < i , ⊗ ∈ {+,−, ∗}.
Additive Complexity What is the minimal number of ± needed to

write f ?

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

In practice

Dense has its drawbacks.

Compute
(
x1000000 − 1

) (
x1000000 + 1

)
?

Certainly Sir: please wait a moment while I do
1,000,002,999,997 multiplications by zero.

Factored Is used by QEPCAD and other specialist systems.

SLP hasn’t caught on (and is harder than sparse)

Additive Complexity is really a theoretical tool

So that leaves Sparse, but . . .

Books always recommend sparse polynomials.

They discuss addition, cunning algorithms for multiplying t-
and u-term polynomials in O(tu log min(t, u)) operations,

rather than the more obvious O(tu(log t + log u)),

then silently switch to dense models.

Sparse “gets too difficult”.

So that leaves Sparse, but . . .

Books always recommend sparse polynomials.

They discuss addition, cunning algorithms for multiplying t-
and u-term polynomials in O(tu log min(t, u)) operations,

rather than the more obvious O(tu(log t + log u)),

then silently switch to dense models.

Sparse “gets too difficult”.

So that leaves Sparse, but . . .

Books always recommend sparse polynomials.

They discuss addition, cunning algorithms for multiplying t-
and u-term polynomials in O(tu log min(t, u)) operations,

rather than the more obvious O(tu(log t + log u)),

then silently switch to dense models.

Sparse “gets too difficult”.

So that leaves Sparse, but . . .

Books always recommend sparse polynomials.

They discuss addition, cunning algorithms for multiplying t-
and u-term polynomials in O(tu log min(t, u)) operations,

rather than the more obvious O(tu(log t + log u)),

then silently switch to dense models.

Sparse “gets too difficult”.

So that leaves Sparse, but . . .

Books always recommend sparse polynomials.

They discuss addition, cunning algorithms for multiplying t-
and u-term polynomials in O(tu log min(t, u)) operations,

rather than the more obvious O(tu(log t + log u)),

then silently switch to dense models.

Sparse “gets too difficult”.

Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq.

It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2

= (x2 − 2)(xpq − 1).

Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

Difficulty 2 — Verdenius polynomials

Dense polynomials f whose square has fewer terms
[Verdenius1949].

[CoppersmithDavenport1991] considered
complete polynomials of degree 12 of the form:

C :=
(
1 + 2 x − 2 x2 + 4 x3 − 10 x4 + 50 x5 + 125 x6

) (
1 + ax6

)
.

(1)
When a has any one of eight values, the square has only 12 terms.
Subsequently proved optimal by [Abbott2002].

This construction can compound to make lim infn→∞
#(f 2)
#(f) = 0.

So lim supn→∞
#gcd(g ,g ′)

#(g) =∞ (g = f 2).

Difficulty 2 — Verdenius polynomials

Dense polynomials f whose square has fewer terms
[Verdenius1949]. [CoppersmithDavenport1991] considered
complete polynomials of degree 12 of the form:

C :=
(
1 + 2 x − 2 x2 + 4 x3 − 10 x4 + 50 x5 + 125 x6

) (
1 + ax6

)
.

(1)
When a has any one of eight values, the square has only 12 terms.

Subsequently proved optimal by [Abbott2002].

This construction can compound to make lim infn→∞
#(f 2)
#(f) = 0.

So lim supn→∞
#gcd(g ,g ′)

#(g) =∞ (g = f 2).

Difficulty 2 — Verdenius polynomials

Dense polynomials f whose square has fewer terms
[Verdenius1949]. [CoppersmithDavenport1991] considered
complete polynomials of degree 12 of the form:

C :=
(
1 + 2 x − 2 x2 + 4 x3 − 10 x4 + 50 x5 + 125 x6

) (
1 + ax6

)
.

(1)
When a has any one of eight values, the square has only 12 terms.
Subsequently proved optimal by [Abbott2002].

This construction can compound to make lim infn→∞
#(f 2)
#(f) = 0.

So lim supn→∞
#gcd(g ,g ′)

#(g) =∞ (g = f 2).

Difficulty 2 — Verdenius polynomials

Dense polynomials f whose square has fewer terms
[Verdenius1949]. [CoppersmithDavenport1991] considered
complete polynomials of degree 12 of the form:

C :=
(
1 + 2 x − 2 x2 + 4 x3 − 10 x4 + 50 x5 + 125 x6

) (
1 + ax6

)
.

(1)
When a has any one of eight values, the square has only 12 terms.
Subsequently proved optimal by [Abbott2002].

This construction can compound to make lim infn→∞
#(f 2)
#(f) = 0.

So lim supn→∞
#gcd(g ,g ′)

#(g) =∞ (g = f 2).

Difficulty 2 — Verdenius polynomials

Dense polynomials f whose square has fewer terms
[Verdenius1949]. [CoppersmithDavenport1991] considered
complete polynomials of degree 12 of the form:

C :=
(
1 + 2 x − 2 x2 + 4 x3 − 10 x4 + 50 x5 + 125 x6

) (
1 + ax6

)
.

(1)
When a has any one of eight values, the square has only 12 terms.
Subsequently proved optimal by [Abbott2002].

This construction can compound to make lim infn→∞
#(f 2)
#(f) = 0.

So lim supn→∞
#gcd(g ,g ′)

#(g) =∞ (g = f 2).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity.

Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.

A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).

The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2

= (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).

A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).

Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Kinds of Polynomial

We will say that a polynomial is cyclotomic , if all its roots are roots
of unity. Many authors reserve this for irreducible polynomials, but
we will explicitly say “irreducible” when we need to.
A polynomial f is self-reciprocal if f (x) = xnf (1/x).
The product of self-reciprocals is self-reciprocal, but the converse is
not true: 2x2 − 5x + 2 = (2x − 1)(x − 2).
A monic integer non-self-reciprocal polynomial has a product of
roots greater than RootOf(θ3 − θ − 1) ≈ 1.324717957
[Smyth1971] (in absolute value).
Therefore the number of them is bounded by polynomial(t,log2 H)
(independent of n).

Difficulty 3 — Cyclotomic Polynomials

Let Φk be the k-th irreducible cyclotomic polynomial:

Φk(x) =
∏

gcd(j ,k)=1

(x − e2πij/k).

Φk has degree φk = |{j < k | gcd(j , k) = 1}|.

c
k log log k

log k
≤ φ(k) < k .

In practice φ(k) > k/10.

Difficulty 3 — Cyclotomic Polynomials

Let Φk be the k-th irreducible cyclotomic polynomial:

Φk(x) =
∏

gcd(j ,k)=1

(x − e2πij/k).

Φk has degree φk = |{j < k | gcd(j , k) = 1}|.

c
k log log k

log k
≤ φ(k) < k .

In practice φ(k) > k/10.

Difficulty 3 — Cyclotomic Polynomials

Let Φk be the k-th irreducible cyclotomic polynomial:

Φk(x) =
∏

gcd(j ,k)=1

(x − e2πij/k).

Φk has degree φk = |{j < k | gcd(j , k) = 1}|.

c
k log log k

log k
≤ φ(k) < k .

In practice φ(k) > k/10.

Difficulty 3 — Cyclotomic Polynomials

Let Φk be the k-th irreducible cyclotomic polynomial:

Φk(x) =
∏

gcd(j ,k)=1

(x − e2πij/k).

Φk has degree φk = |{j < k | gcd(j , k) = 1}|.

c
k log log k

log k
≤ φ(k) < k .

In practice φ(k) > k/10.

Φk has surprising coefficient growth

Not always ±1. Φ105 has the first ±2, Φ385 the first ±3 and Φ1365

the first ±4. Thereafter the situation behaves as follows:

Table: Large coefficients in Φk

|ai | 5 6 7 8=9 14 23
first Φk 1785 2805 3135 6545 10465 11305
φ(k) 768 1280 1440 3840 6336 6912
|ai | 25 27 59 359
first Φk 17225 20615 26565 40755
φ(k) 10752 12960 10560 17280

Φk has surprising coefficient growth

Not always ±1.

Φ105 has the first ±2, Φ385 the first ±3 and Φ1365

the first ±4. Thereafter the situation behaves as follows:

Table: Large coefficients in Φk

|ai | 5 6 7 8=9 14 23
first Φk 1785 2805 3135 6545 10465 11305
φ(k) 768 1280 1440 3840 6336 6912
|ai | 25 27 59 359
first Φk 17225 20615 26565 40755
φ(k) 10752 12960 10560 17280

Φk has surprising coefficient growth

Not always ±1. Φ105 has the first ±2, Φ385 the first ±3

and Φ1365

the first ±4. Thereafter the situation behaves as follows:

Table: Large coefficients in Φk

|ai | 5 6 7 8=9 14 23
first Φk 1785 2805 3135 6545 10465 11305
φ(k) 768 1280 1440 3840 6336 6912
|ai | 25 27 59 359
first Φk 17225 20615 26565 40755
φ(k) 10752 12960 10560 17280

Φk has surprising coefficient growth

Not always ±1. Φ105 has the first ±2, Φ385 the first ±3 and Φ1365

the first ±4.

Thereafter the situation behaves as follows:

Table: Large coefficients in Φk

|ai | 5 6 7 8=9 14 23
first Φk 1785 2805 3135 6545 10465 11305
φ(k) 768 1280 1440 3840 6336 6912
|ai | 25 27 59 359
first Φk 17225 20615 26565 40755
φ(k) 10752 12960 10560 17280

Φk has surprising coefficient growth

Not always ±1. Φ105 has the first ±2, Φ385 the first ±3 and Φ1365

the first ±4. Thereafter the situation behaves as follows:

Table: Large coefficients in Φk

|ai | 5 6 7 8=9 14 23
first Φk 1785 2805 3135 6545 10465 11305
φ(k) 768 1280 1440 3840 6336 6912
|ai | 25 27 59 359
first Φk 17225 20615 26565 40755
φ(k) 10752 12960 10560 17280

Cyclotomics mean that

A sparse polynomial can have dense factors:
xp − 1 = (x − 1)(xp−1 + · · ·+ 1)

The coefficients can be much larger than you would expect

The cofactors of the gcd of sparse polynomials can be dense:
gcd(xp − 1, xq − 1);

The square-free decomposition of sparse polynomials can be
dense:

sqfr((xp−1)2(xq−1)) = (x−1)3(xp−1+· · ·+1)2(xq−1+· · ·+1).

Cyclotomics mean that

A sparse polynomial can have dense factors:
xp − 1 = (x − 1)(xp−1 + · · ·+ 1)

The coefficients can be much larger than you would expect

The cofactors of the gcd of sparse polynomials can be dense:
gcd(xp − 1, xq − 1);

The square-free decomposition of sparse polynomials can be
dense:

sqfr((xp−1)2(xq−1)) = (x−1)3(xp−1+· · ·+1)2(xq−1+· · ·+1).

Cyclotomics mean that

A sparse polynomial can have dense factors:
xp − 1 = (x − 1)(xp−1 + · · ·+ 1)

The coefficients can be much larger than you would expect

The cofactors of the gcd of sparse polynomials can be dense:
gcd(xp − 1, xq − 1);

The square-free decomposition of sparse polynomials can be
dense:

sqfr((xp−1)2(xq−1)) = (x−1)3(xp−1+· · ·+1)2(xq−1+· · ·+1).

Cyclotomics mean that

A sparse polynomial can have dense factors:
xp − 1 = (x − 1)(xp−1 + · · ·+ 1)

The coefficients can be much larger than you would expect

The cofactors of the gcd of sparse polynomials can be dense:
gcd(xp − 1, xq − 1);

The square-free decomposition of sparse polynomials can be
dense:

sqfr((xp−1)2(xq−1)) = (x−1)3(xp−1+· · ·+1)2(xq−1+· · ·+1).

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

1 Deciding if two sparse polynomials are relatively prime.

2 Deciding is a sparse polynomial has a root of modulus 1.

(Note this is not quite the same as “has a cyclotomic factor”).

3 Determine whether xn − 1 divides a given set of sparse
polynomials (actually NP-complete).

4 Various questions about quotients and remainders.

These are reductions from 3-SAT, or from finding least primes
in arithmetic progressions.

On the plus side — Theoreticians

[Lenstra1999b] has a polynomial-time procedure that will find
low-degree (≤ d) factors of a sparse polynomial: in fact
polynomial(d ,t,log H) and independent of the input degree.

Re: Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

We assume an “integer factorization oracle”, but it can’t be called
“too much”:

∑
blog2 kic ≤ log2 n.

Re: Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

We assume an “integer factorization oracle”, but it can’t be called
“too much”:

∑
blog2 kic ≤ log2 n.

Re: Difficulty 1 — Factoring

xpq−1 = (x−1)(xp−1+· · ·+1)(xq−1+· · ·+1)(xpq−p−q−1+· · ·−1)

and so knowing the degree of the factors is equivalent to factoring
n = pq. It’s not enough to require that n be given factored, since
this problem can be “dressed up”, e.g.

xpq+2 − 2xpq + x2 − 2 = (x2 − 2)(xpq − 1).

We assume an “integer factorization oracle”, but it can’t be called
“too much”:

∑
blog2 kic ≤ log2 n.

Re: Difficulty 2 — Verdenius polynomials

Accept that most of our “common sense” bounds are wrong, and
“common sense” estimates may be wrong.

This is the hard part!.
Either produce procedures that will look for an answer, but not
guarantee to find it, or resort to a reserve procedure.

Re: Difficulty 2 — Verdenius polynomials

Accept that most of our “common sense” bounds are wrong, and
“common sense” estimates may be wrong. This is the hard part!.

Either produce procedures that will look for an answer, but not
guarantee to find it, or resort to a reserve procedure.

Re: Difficulty 2 — Verdenius polynomials

Accept that most of our “common sense” bounds are wrong, and
“common sense” estimates may be wrong. This is the hard part!.
Either produce procedures that will look for an answer, but not
guarantee to find it, or resort to a reserve procedure.

Re: Difficulty 3 — Cyclotomic Polynomials

1 Ignore them,

i.e. produce algorithms for inputs which are guaranteed
cyclotomic-free.

2 Or at least detect them — hard in theory, easy in practice.

3 Or make them first-class citizens

Re: Difficulty 3 — Cyclotomic Polynomials

1 Ignore them,

i.e. produce algorithms for inputs which are guaranteed
cyclotomic-free.

2 Or at least detect them — hard in theory, easy in practice.

3 Or make them first-class citizens

Re: Difficulty 3 — Cyclotomic Polynomials

1 Ignore them,

i.e. produce algorithms for inputs which are guaranteed
cyclotomic-free.

2 Or at least detect them — hard in theory, easy in practice.

3 Or make them first-class citizens

Re: Difficulty 3 — Cyclotomic Polynomials

1 Ignore them,

i.e. produce algorithms for inputs which are guaranteed
cyclotomic-free.

2 Or at least detect them — hard in theory, easy in practice.

3 Or make them first-class citizens

Cyclotomics as first-class citizens (1)

As well as an ordinary sparse polynomial, admit Φk in the output,
so that “factor xp − 1” gives
(x − 1)Φp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = (x − 1)3Φp(x)2Φq(x).

In order to answer questions like “what is the degree?”, we
probably need to attach the factorization of k to Φk .

Cyclotomics as first-class citizens (1)

As well as an ordinary sparse polynomial, admit Φk in the output,
so that “factor xp − 1” gives

(x − 1)Φp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = (x − 1)3Φp(x)2Φq(x).

In order to answer questions like “what is the degree?”, we
probably need to attach the factorization of k to Φk .

Cyclotomics as first-class citizens (1)

As well as an ordinary sparse polynomial, admit Φk in the output,
so that “factor xp − 1” gives
(x − 1)Φp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = (x − 1)3Φp(x)2Φq(x).

In order to answer questions like “what is the degree?”, we
probably need to attach the factorization of k to Φk .

Cyclotomics as first-class citizens (1)

As well as an ordinary sparse polynomial, admit Φk in the output,
so that “factor xp − 1” gives
(x − 1)Φp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = (x − 1)3Φp(x)2Φq(x).

In order to answer questions like “what is the degree?”, we
probably need to attach the factorization of k to Φk .

Cyclotomics as first-class citizens (2)

As well as an ordinary sparse polynomial, admit Ck = xk − 1 in the
output, so that “factor xp − 1” gives
Cp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = Cp(x)2Cq(x).

In order to answer questions like “how many factors are there?” or
“what degree are they?”, we probably need to attach the
factorization of k to Ck .

Cyclotomics as first-class citizens (2)

As well as an ordinary sparse polynomial, admit Ck = xk − 1 in the
output, so that “factor xp − 1” gives

Cp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = Cp(x)2Cq(x).

In order to answer questions like “how many factors are there?” or
“what degree are they?”, we probably need to attach the
factorization of k to Ck .

Cyclotomics as first-class citizens (2)

As well as an ordinary sparse polynomial, admit Ck = xk − 1 in the
output, so that “factor xp − 1” gives
Cp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = Cp(x)2Cq(x).

In order to answer questions like “how many factors are there?” or
“what degree are they?”, we probably need to attach the
factorization of k to Ck .

Cyclotomics as first-class citizens (2)

As well as an ordinary sparse polynomial, admit Ck = xk − 1 in the
output, so that “factor xp − 1” gives
Cp(x) as the output. Similarly

sqfr((xp − 1)2(xq − 1)) = Cp(x)2Cq(x).

In order to answer questions like “how many factors are there?” or
“what degree are they?”, we probably need to attach the
factorization of k to Ck .

Cyclotomics as first-class citizens (3)

In theory, option 2 is preferable, but I’d advise a computer algebra
system manufacturer to make option 1 the default.

In theory it makes no difference, but in practice I’d advise allowing
“scaled cyclotomics” in the answer as well, to allow for the wise
guy who asks “factor x1000000 − 21000000 = 21000000C1000000(x/2)”.

Cyclotomics as first-class citizens (3)

In theory, option 2 is preferable, but I’d advise a computer algebra
system manufacturer to make option 1 the default.
In theory it makes no difference, but in practice I’d advise allowing
“scaled cyclotomics” in the answer as well, to allow for the wise
guy who asks “factor x1000000 − 21000000 = 21000000C1000000(x/2)”.

Re: Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.

Ignore them! (only joking)
This is to say, our algorithms might:

occasionally take a very long time;

occasionally return “I couldn’t find a gc.d./factorization/. . . ,
but I can’t prove there isn’t one”.

Re: Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.
Ignore them!

(only joking)
This is to say, our algorithms might:

occasionally take a very long time;

occasionally return “I couldn’t find a gc.d./factorization/. . . ,
but I can’t prove there isn’t one”.

Re: Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.
Ignore them! (only joking)
This is to say, our algorithms might:

occasionally take a very long time;

occasionally return “I couldn’t find a gc.d./factorization/. . . ,
but I can’t prove there isn’t one”.

Re: Difficulty 4 — Theoreticians

[Plaisted1984] has a number of NP-hardness results.
Ignore them! (only joking)
This is to say, our algorithms might:

occasionally take a very long time;

occasionally return “I couldn’t find a gc.d./factorization/. . . ,
but I can’t prove there isn’t one”.

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors

(note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors

(note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors

(note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors

(note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors

(note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

More open questions

1 How dense can the g.c.d. of sparse polynomials be?

(Both in theory and in practice)

2 How dense can the highest-multiplicity square-free factor be?

3 How hard is finding the number of factors (note that knowing
that n is the product of k distinct primes, without knowing
what they are, is sufficient here)?

