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Data Citation

Is a mess in practice [vdSNI+19]: only 1.16% of dataset DOIs
in Zenodo are cited (and 98.5% of these are self-citation).
Is poorly harvested: [vdSNI+19, Figure 5].

so there
are between
4,000–20,000
data sets waiting
to be harvested
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Data Citation

Is a mess in practice [vdSNI+19]: only 1.16% of dataset DOIs
in Zenodo are cited (and 98.5% of these are self-citation).

Is poorly harvested: [vdSNI+19, Figure 5].

Is still a subject of some uncertainty: [MN12, KS14]

Changes are still being proposed [DPS+20]

de facto people cite a paper if they can find one.

James Davenport
Digital Collections of Examples in Mathematical Sciences
4 / 40



Pure Mathematics
SAT and SMT; Complexity Theory

Computer Algebra and ¬ Complexity Theory

Important Databases in Pure Mathematics

OEIS Online Encyclopedia of Integer Sequences [Slo03];

Long time at a personal site: http:
//www.research.att.com/~njas/sequences; now
at https://oeis.org/.

* Recommended citation: “N. J. A. Sloane, editor, The
On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, [date]”.

� But you have to search the website to find it!

+ Large toolset around it.
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Group Theory (as an example)

The Classification of Finite Simple Groups

The Transitive Groups acting on n points: [BM83] (n ≤ 11);
[Roy87] (n = 12); [But93] (n = 14, 15); [Hul96] (n = 16);
[Hul05] (17 ≤ n ≤ 31); [CH08] (n = 32).

These are in GAP (and MAGMA), except that n = 32 isn’t in
the default build.

+ These are a really great resource (if that’s what you want)

– How do you cite them? “[The21, GAP transgrp library]”?

Also Other libraries such as primitive groups

� Group Theory is “easy”: for a given n there are a finite
number and we “just” have to list them.
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SAT Solving

SAT solving, normally seen as solving a Boolean expression written
in CNF. Given a 3-literals/clause CNF satisfiability problem,

(l1,1 ∨ l1,2 ∨ l1,3)︸ ︷︷ ︸
Clause 1

∧(l2,1 ∨ l2,2 ∨ l2,3) ∧ · · · ∧ (lN,1 ∨ lN,2 ∨ lN,3),

where li ,j ∈ {x1, x1, x2, x2, . . .}, is it satisfiable? In other words, is
there an assignment of {T ,F} to the xi such that all the clauses
are simultaneously true.
3-SAT: the quintessential NP-complete problem [Coo66]. 2-SAT is
polynomial, and k-SAT for k > 3 is polynomial-transformable into
3-SAT. In practice we deal with SAT — i.e. no limitations on the
length of the clauses.
Let n be the number of i such that xi (and/or xi ) actually occur.
Typically n is of a similar size to N.
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SAT Solving

Despite being NP-complete, nearly all examples are easy (e.g.
[KS00] for the automotive industry),
either easily solved (SAT) or easily proved insoluble (UNSAT) and
for random problems there seems to be a distinct phase transition
between the two: [GW94, AP04, AP06].
This means that constructing difficult examples is itself difficult,
and a research area in itself: [Spe15, BC18].
SAT solving has many applications, e.g. new ways of multiplying
matrices [HKS21], so we want effective solvers for “real” problems,
not just “random” ones.

� Fundamental question: what does this mean?
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SAT Contests: http://www.satcompetition.org

Been run since 2002. In the early years, distinct tracks for
Industrial/Handmade/Random problems: this has been abandoned.
The methodology is that the organisers accept submissions (from
contestants and others), then produce a list of problems (in a
standard format) and set a time (and memory) limit, and see how
many of the problems the submitted systems can solve on the
contest hardware.
SAT is easy to certify (just produce a list of values), UNSAT is
much harder, but since 2013 the contest has required proofs of
UNSAT for the UNSAT track, and since 2020 in all tracks, in
DRAT: a specified format (some have been > 100GB).
The general feeling is that these contests have really pushed the
development of SAT solvers, roughly speaking ×2/year. For
comparison, Linear Programming has done ×1.8 over a greater
timeline [Bix15], chips ×1.41 [Moo75].
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SAT in practice

Although SAT, and k-SAT, are reducible to 3-SAT, we shouldn’t
do this in practice. Indeed, some solvers look for this reduction and
undo it.
A significant practical development was “Two Watched Literals”
[MMZ+01], which means that, most of the time, we don’t look at
a whole clause.

In the worst case it is no more efficient than the algorithm it
replaced, in practice it is hundreds of times more efficient.
The “not moving back” feels like it should save at most
half the time, it in fact speeds things up by often 10 times.
https://news.ycombinator.com/item?id=18236555

In particular it is much more cache-efficient on modern processors.
This is essentially orthogonal to complexity theory as we know it.
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SMT: life beyond SAT

Consider a theory T , with variables yj , and various Boolean-valued
statements in T of the form Fi (y1, . . . , yn), and a CNF with
Fi (y1, . . . , yn) rather than just xi .
Then the SAT/UNSAT question is similar (∃ values of yi . . . ), and
the community runs SMT Competitions
(https://smt-comp.github.io/2020/), but a separate track for
each theory, as the problems will be different.
The SMTLIB format [BFT17] provides a standard input format.
UNSAT is in general unsolved (but see [KAED21] for one example).
There is substantial progress in SMT-solving over the years,
possibly similar to SAT.
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Computer Algebra: where are we

Obviously, Group Theory (etc.) are part of computer algebra: what
about the rest?

� Much traditional complexity theory is for dense
polynomials/matrices/. . . , but real life is often about
sparse ones.

In general the problems have a bad worst-case complexity, and we
want effective solvers for “real” problems, not just “random” ones.

� The question is “what does this mean?”.

Format No common standard. We do have OpenMath
[BCC+17], but it’s not as widely supported as we
would like.

Contests None. Could SIGSAM organise them?

Problem Sets No independent ones. Each author chooses his own.

Archive Not really.
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Polynomial g.c.d.

NP-hard (for sparse polynomials, even univariate) [Pla84].

Can be challenging for multivariates

– No standard database: trawl previous papers (and often need
to ask the authors)

� Verification is a challenge: one can check that the result is a
common divisor, but verifying greatest is still NP-hard [Pla84].
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Polynomial g.c.d.: However

The NP-hardness results of [Pla84] rely on encoding a SAT-formula
W in x1, . . . , xn as PM(W ), which vanishes at the M =

∏n
i=1 pi th

roots of unity corresponding to satisfying assignments for W .
There are also blow-up results [Sch03]

gcd(xpq − 1, xp+q − xp − xq + 1) = (xp−1)(xq−1)
x−1

= xp+q−1 + xp+q−2 ± · · · − 1︸ ︷︷ ︸
2min(p, q) terms

,

[DC10] asks whether these problems are limited to cyclotomics,
and [CD10] asks about explicitly encoding cyclotomics, so this

would be gcd(Cpq,CpCq) =
CpCq

C1
. Both are open problems.
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Polynomial Factorisation

1 Standard algorithm [Zas69] has exponential worst-case
behaviour [SD69].

2 [Col79] conjectured polynomial average*-time.

3 Polynomial-time for dense encodings [LLL82], but a very bad
exponent.

4 Exponentially larger output for sparse encodings:
xp − 1 = (x − 1)(xp−1 + · · ·+ 1)

5 presumably NP-hard (even in terms of output size) for sparse.

� Verification is a challenge: one can check that the result is a
factorisation, but checking completeness (i.e. that these
factors are irreducible) seems to be as hard as the original
problem (in the worst case).
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Polynomial Factorisation: Reality

� With probability 1, a random polynomial is irreducible, so
what are the interesting problems?

* Therefore [Col79] conjecture needed a subtle definition of
“average” time

* [ABD88] points out that “difficult” examples arise from
factoring over algebraic number fields, which happen in “real
life”.

Hence An “engineering” task of switching between “exponential but
generally quick” and “slow but guaranteed polynomial”.

– No standard database: trawl previous papers (and often need
to ask the authors)

So what constitutes a good benchmark for such tasks?
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Gröbner Bases

Doubly exponential (w.r.t. n) worst-case complexity [MR13],
even if a prime ideal [Chi09].

+ There is a collection [BM96]

– Very old (1996) and completely static.

– – Some examples only in PDF.

Again The generic case is not interesting: Shape Lemma [BMMT94].

? No concept of UNSAT, but it’s not clear what a certificate
might mean.
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Real Algebraic Geometry (CAD)

Doubly exponential (w.r.t. n) worst-case complexity [BD07]

+ There is a collection [Wil14]

– Somewhat old (2014) and completely static.√
The DEWCAD project [BDE+21] might update this, but still

issues of long-term conservation.

? Format: text, Maple and QEPCAD

? No concept of UNSAT (but see [KAED21]), and it’s not clear
what a “certificate” might mean.
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Real Algebraic Geometry (CAD)

Let a be the number of alternations of quantifiers.

[BD07] has a = n − 1.

There are (unimplemented) algorithms for quantifier

elimination which are dpoly(n)2
a
, and implemented algorithms

which might have similar complexity.

The world of software, or cyber-physical systems, tends to
produce examples with a = 0, i.e. ∃geometry : bad(geometry)

? Are there natural examples for quantifier elimination with a
non-trivial?
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Integration

Complexity is essentially unknown (but certainly involves
g.c.d., factorisation etc.)

A new question here is the “niceness” of the output.

“Paper” mathematics produced large databases, e.g. [GR07].

– PDF, and the devil to scan.

Current best database is described in [JR10].

Algorithm-based software (e.g. [Dav81]) has an internal proof
of UNSAT, but I know of no software that can exhibit it.
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—————//////////Black swans [AL17]

“Average-case complexity without the black swans”: i.e. without
an exponentially-rare family that is worse than exponentially bad.

Definition

For k ∈ N let (Mk , µk) be a probability space and let Tk : Mk → R
be a µk -measurable function. We say that the family {Tk} has a
weak expectation of O(f (k)) if there exists a family of sets of
exceptional inputs,Ek ⊆ Mk , such that µk(Ek) = e−Ω(k) and the
conditional expectation E [Tk(x)|x /∈ Ek ] is bounded by O(f (k)).

Condition numbers inversely proportional to a distance to a
homogeneous algebraic set of ill-posed inputs;

Renegar’s condition number for conic optimization;

The running time of power iteration for computing a leading
eigenvector of a Hermitian matrix.
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Guesses

Guess

Gröbner basis computation is weakly singly exponential in n.

Needs a measure on sets of polynomial inputs, or possibly a
measure on ideals. Might need some further restrictions e.g. to
radical ideals (but see [Chi09])

Guess

Real Quantifier Elimination is weakly singly exponential in n for
any a/n ratio.

Needs a measure on inputs, I think.

James Davenport
Digital Collections of Examples in Mathematical Sciences
22 / 40



Pure Mathematics
SAT and SMT; Complexity Theory

Computer Algebra and ¬ Complexity Theory

Conclusions

1 We need to be more inventive around complexity theory

2 The field of computer algebra really ought to invest in the sort
of contests that have stimulated the SAT and SMT worlds.

3 This requires much larger databases of “relevant” problems
than we currently have, and they need to be properly curated.

+ Technology, e.g. wikis, or GitHub, has greatly advanced since
[BM96].

4 These collections would allow much better benchmarking
technology [BDG17].
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