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Overview

0 Introduction

1 Local equational constraints [BDE+13, BDE+14]

2 Multiple/Better Equational Constraints [EBD15]
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History of Quantifier Elimination

In 1930, Tarski discovered [Tar51] that the (semi-)algebraic
theory of Rn admitted quantifier elimination

∃xk+1∀xk+2 . . .Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xk)

“Semi” = “allowing >, ≤ and 6= as well as =”

Needed as ∃y : x = y2 ⇔ x ≥ 0

The complexity of this was indescribable

In the sense of not being elementary recursive!

In 1973, Collins [Col75] discovered a much better way:

Complexity (m polynomials, degree d , n variables, coefficient
length l)

(2d)2
2n+8

m2n+6
l3 (1)

Construct a cylindrical algebraic decomposition of Rn, sign
invariant for every polynomial

Then read off the answer
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What is a CAD?

A Cylindrical Algebraic Decomposition (CAD) is a mathematical
object. Defined by Collins who also gave the first algorithm to
compute one. A CAD is:

a decomposition meaning a partition of Rn into connected
subsets called cells;

(semi-)algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequalities;

cylindrical meaning the cells are arranged in a useful manner
— their projections are either equal or disjoint.

In addition, there is (usually) a sample point in each cell, and an
index locating it in the decomposition
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“Read off the answer”

Each cell is sign invariant, so the the truth of a formula
throughout the cell is the truth at the sample point.

∀xF (x)⇔ “F (x) is true at all sample points”

∃xF (x)⇔ “F (x) is true at some sample point”

∀x∃yF (x , y)⇔ “take a CAD of R2, cylindrical for y projected
onto x-space, then check

∀ sample x ∃ sample (x , y) : F (x , y) is true”: finite check

NB The order of the quantifiers defines the order of projection

So all we need is a CAD!
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The basic idea for CAD [Col75]

Rn Rn

Rn−1 Rn−1

Rn−2 Rn−2

R1 R1

Projection Lifting
(& Isolation)

Root Isolation
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So how do we project?
(Lifting is in fact relatively straight-forward)

Given polynomials Pn = {pi} in x1, . . . , xn, what should Pn−1 be?

Näıve (Doesn’t work!) Every Discxn(pi ), every Resxn(pi , pj)

i.e. where the polynomials fold, or cross: misses lots of
“special” cases

[Col75] First enlarge Pn with all its reducta, then näıve plus
the coefficients of Pn (with respect to xn) the
principal subresultant coefficients from the Discxn
and Resxn calculations

[Hon90] a tidied version of [Col75].

[McC88] Let Bn be a squarefree basis for the primitive parts of
Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every Discxn(bi ), Resxn(bi , bj) from Bn

[Bro01] Näıve plus leading coefficients (not squarefree!)
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Setting

Cylindrical Algebraic Decomposition in R[x1, . . . , xn], with xn the
first variable to be eliminated.
General method via Projection/Lifting in the style of [Col75, W7̈6].

Open Problem

Extend part 2 of this to the Regular Chains approach [CMXY09]

[Col75] A cylindrical decomposition of Rn sign-invariant for
each polynomial

[McC84] A cylindrical decomposition of Rn−1 order-invariant
for each polynomial at this stage, and a cylindrical
decomposition of Rn sign-invariant for each
polynomial

� or failure if the polynomials were not well-oriented

which occurs with probability 0 in theory, but quite
often in practice.

EC An equational constraint is f (x) = 0 ∧ · · ·
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Are these projections correct?

[Col75] Yes, and it’s relatively straightforward to prove that,
over a cell in Rn−1 sign-invariant for Pn−1, the
polynomials of Pn do not cross, and define cells
sign-invariant for the polynomials of Pn

[McC88] 52 pages (based on [Zar75]) prove the equivalent
statement, but for order-invariance, not
sign-invariance, provided the polynomials are
well-oriented, a test that has to be applied during
lifting.

But if they’re not known to be well-oriented?

[McC88] suggests adding all partial derivatives

In practice hope for well-oriented, and if it fails use Hong’s
projection.

[Bro01] Needs well-orientedness and additional checks
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Motivations for cylindrical algebraic decomposition

1 Quantifier elimination — the original one

* May have local or global equational constraints

2 Robot Motion Planning — [SS83]

* Normally has local and global equational constraints

3 Branch Cut analysis [BBDP07]

* Normally has local equational constraints

Note that we can sometimes transform local ECs into global:

(f1 = 0 ∧ φ1) ∨ (f2 = 0 ∧ φ2)

is equivalent to

f1f2 = 0 ∧ [(f1 = 0 ∧ φ1) ∨ (f2 = 0 ∧ φ2)]

Mostly applicable to Quantifier Elimination

Davenport Cylindrical Algebraic Decomposition with Logical Structure



Complexity Analysis for [McC84]

Assume m polynomials of degree (in each variable) ≤ d .
Measure the number of cells in the output.
Upper bounds

[McC85, Theorem 6.1.5] m2n(2d)n2
n

[BDE+14, (12)] 22
n−1

m(m + 1)2
n−2d2n−1

* (Same algorithm, better analysis)

Lower bounds (actually of cells in R1)

[DH88]; d = 4 22
(n−1)/5

, and these are the roots of a polynomial of
this degree

[BD07]; d = 1 22
(n−1)/3

, and in R1 these are rationals with a
succint description.
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The original EC observation [Col98, McC99b]

If we have a global equational constraint f = 0 ∧ φ, then all we
need is a decomposition that is

1 Sign (or order) invariant for f

2 Sign (or order) invariant for the polynomials gi of φ when
f = 0

Intuitively, we can do this by considering f and Resxn(f , gi ) rather
than f and gi for the first projection level, build the order-invariant
decomposition of Rn−1 for these polynomials (as before), then lift
to a sign-invariant decomposition of Rn

Number of cells bounded by [BDE+14, (14)]

22
n−1

d2n−1m(3m + 1)2
n−1−1,

which is “intuitively reasonable” — we can do nothing about
degree growth, but combinatorial growth is as for one fewer
variable
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The theorem that justifies this [McC99b]

Theorem (McCallum1999)

Let f and g be integral polynomials with mvar xn, and
r(x1, . . . , xn−1) 6= 0 be their resultant. Let S be a connected
subset of Rn−1 on which f is delineable and r order-invariant.
Then g is sign-invariant in every section of f over S.

So we can use the McCallum projection

P(B) := coeff(B) ∪Disc(B) ∪ Res(B)

after xn, where B is the square-free basis of the polynomials, and

PF (B) := P(F ) ∪ {Res(f , g)|f ∈ F ; g ∈ B \ F}

at xn, where F is the square-free basis of the equational constraint.
Note that this theorem does not compose nicely with itself.
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Example

f1 = x + y2 + z
f2 = x − y2 + z
g = x2 + y2 + z2 − 1
f1 = 0 ∧ f2 = 0 ∧ g ≥ 0

Solutions: y = 0, |x | ≥ 1
2

√
2, z = −x (4 cells)

Sign-invariant c.a.d. for {f1, f2., g} has 1487 cells
Declaring either equational constraint gives 289 cells, but the
solution is 8 cells since we have x = 1

2(1±
√

6) as additional points
from Discy (Resz(f1, g))
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Part 1: local equational constraints [BDE+13]

Suppose we are doing quantifier elimination on φ1 ∨ φ2 ∨ · · · ,
where each φi is fi = 0 ∧ gi > 0 (for simplicity).
There is an implicit equation constraint F :=

∏
fi = 0, and using

[McC99a] our first projection is (ignoring coefficients)
Disc(F ) ∪ {Res(F , gi )}, which is

{Disc(fi )} ∪ {Res(fi , fj)} ∪ {Res(fi , gj)}

But this includes Res(fi , gj) (i 6= j), which is logically unnecessary,
but is needed to give us a decomposition sign-invariant for each
fi , gj when F = 0.
Relax to demanding a decomposition that’s truth-invariant for each
φi :

{Disc(fi )} ∪ {Res(fi , fj)} ∪ {Res(fi , gi )}

Very useful for the branch cut problem
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Local equational constraints continued [BDE+14]

But suppose only some φi have equational constraints, so there
isn’t a global implicit equational constraint.
Then for those φi that do have an equational constraint fi = 0, the
corresponding gi (possibly many) need only feature in Res(fi , gi ):
for those φi with no equational constraint, the gi feature as usual.
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Part 2: A better theorem [McC01]

Theorem (McCallum2001)

Let f and g be integral polynomials with mvar xn, and
r(x1, . . . , xn−1) 6= 0 be their resultant, d(x1, . . . , xn−1) 6= 0 be the
discriminant of g . Let S be a connected subset of Rn−1 on which
f is analytic delineable, g not nullified and r , d order-invariant.
Then g is order-invariant in every section of f over S.

This justifies using

P∗
F (B) := PF (B) ∪Disc(B \ F )

at levels below xn where there is an equational constraint, however
we need to assume the constraints are primitive.
If we have f1 = f2 = 0 at xn, we use f1 = 0 here, and Res(f1, f2) at
level xn−1, etc.
The double exponent of m is reduced by the number of equational
constraints.
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Better Projection, yes but . . .

Everyone knows that the main cost of c.a.d. is in the lifting.
We can also get better lifting, providing we abandon two key
principles:

1 That the projection polynomials are a fixed set.

2 That the invariance structure of the final CAD can be
expressed in terms of sign-invariance of polynomials.
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Idea 1: forget polynomials

The 1999 theorem states “g is sign-invariant in every section of f
over S .”
Hence g is unnecessary at the final lift.
Follows from [McC99a], but only noticed in [BDE+13]
Pragmatically very important, but we don’t have a theoretical
analysis
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Idea 1 — Graph of #cells (n = 2; d = 2;m = 2× x-axis)

Full CAD
QEPCAD with EC
Our EC with Idea 1
TTICAD
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Idea 2: forget sign-invariance

If a cell in Rk is already known to be false, there is no point doing
any (non-trivial) lifting over it.
If we have f1 = 0 ∧ f2 = 0 ∧ . . ., then in Rn−2 we will be looking at
the zeros of Resxn(f1, f2). Away from the zeros of this,
f1 = 0 ∧ f2 = 0 is trivially false, so we needn’t do any lifting.
Also, no lifting over C means no nullification worries over C , since
this is a local concern.
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Open Problem

Extend the Phase 2 ideas to merge with Phase 1 (done for some of
the lifting reduction)

This seems needed for

Open Problem

Handle non-primitive equational constraints:
f = 0⇔ ppxn(f ) = 0 ∨ contxn(f ) = 0

Open Problem

Combine this with [BM09] on iterated resultants.
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