
Proving an Execution of an Algorithm Correct?
The case of Polynomial Factorisation

James Davenport
masjhd@bath.ac.uk

With Edgar Costa, Alex Best, Mario Carneiro

University of Bath
Thanks to IPAM at UCLA for prompting this, and many colleagues, especially at

Dagstuhl seminar 23401, for input
Partially supported by EPSRC grant EP/T015713

6 October 2023

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
1 / 11



General Situation

Do I believe the output from my (complicated, optimised,
unverified) computer algebra system?
See JHD’s paper at CICM 2023 [Dav23], but note that the same
question, in different settings, was asked by Mehlhorn [Meh11] in
1999.
[Dav23] looked at three examples.

Polynomial Factorisation f = f1f2 · · · fk and the fi is irreducible.

Integration The assertion “unintegrable” is correct.

Real Algebraic Geometry The assertion that the semi-algebraic
variety is empty (UNSAT) is correct.

The last is the most important question, but factorisation is easy
to explain and a good case study in its own right.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
2 / 11



Polynomial Factorisation

The base case is polynomials in Z[x ].

Problem (Factorisation)

Given f ∈ Z[x ], write f =
∏

fi where the fi are irreducible
elements of Z[x ].

Verifying that f =
∏

fi is, at least relatively, easy. The hard part is
verifying that the fi are irreducible. JHD knows of no
implementation of polynomial factorisation that produces any
evidence, let alone a proof, of this.
We may as well assume f is square-free (this would be a rather
separate verification question).

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
3 / 11



Algorithm

The basic algorithm goes back to [Zas69]: step M is a later
addition [Mus75], and the H’ variants are also later.

1 Choose a prime p (not dividing the leading coefficient of f )
such that f (mod p) is also square-free.

2 Factor f modulo p as
∏

f
(1)
i (mod p).

M Take five p and compare the factorisations.
3 If f can be shown to be irreducible from modulo p

factorisations, return f .
4 Let B be such that any factor of f has coefficients less than B

in magnitude, and n such that pn ≥ 2B. [Landau–Mignotte]

5 Use Hensel’s Lemma to lift the factorisation to f =
∏

f
(n)
i

(mod pn)

H Starting with singletons and working up, take subsets of the

f
(n)
i , multiply them together and check whether, regarded as
polynomials over Z with coefficients in [−B,B], they divide f
— if they do, declare that they are irreducible factors of f .

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
4 / 11



Algorithm Notes

H’ Use some alternative technique, originally [LLL82], but now
e.g. [ASZ00, HvHN11] to find the true factor corresponding

to f
(n)
1 , remove f

(n)
1 and the other f

(n)
i corresponding to this

factor, and repeat.

� In practice, there are a lot of optimisations, which would
greatly complicate a proof of correctness of an
implementation of this algorithm.

We found that, although the Hensel construction is basi-
cally neat and simple in theory, the fully optimised version
we finally used was as nasty a piece of code to write and
debug as any we have come across [MN81].

Since if f is irreducible modulo p, it is irreducible over the integers,
the factors produced from singletons in step 5 are easily proved to
be irreducible. Unfortunately, the chance that an irreducible
polynomial of degree n is irreducible modulo p is 1/n.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
5 / 11



Algorithm Notes

A factorisation algorithm could, even though no known
implementation does, relatively easily produce the required
information for a proof of irreducibility unless the recombination
step is required.

Note that verifying the Hensel lifting, the “nasty piece” from
[MN81] is easy: the factors just have to have the right
degrees from the factorisation of f (mod p) and multiply to
give f (mod pn).

� Building test cases for the various edge cases was extremely
difficult.

Step [H] is relatively easy to verify: this combination divides and
no smaller combination divides. The variants in [H’] are
interesting: I have not found an easy route.
If [H’] finds a factor that is a product of k p-adic factors, then we
can use [H] to verify this by checking that the 2k − 2 subsets do
not give factors.
But if [H’] says “irreducible”, I know no easy proof.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
6 / 11



Progress at Dagstuhl

1 We can extract from the implementation in FLINT [tea23] of
the algorithm with [H], at essentially no cost, the key data
that we believe a verifier would need to confirm the
irreducibility.

2 But this is not necessarily the most efficient verification.

3 We think that a more efficient verification would need
negligibly more work.

4 We haven’t built a verification.

5 The “hard” theorems are (being) stated (LEAN), but what
about the “easy” ones, mappings such as “regarded as
polynomials over Z with coefficients in [−B,B]”?

6 Needs more theorem prover input.

But We have discovered improvements to FLINT, and at least one
new research question in computer algebra.

+ FLINT also has [H’], but we haven’t looked at this yet.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
7 / 11



So what is the certificate?

1 The 5(?) Musser primes (or the useful subset)

2 The factorisations modulo these

* Need to verify that these are irreducible.

3 The chosen p and n

4 The set S of factors modulo pn

* Need to check they match the mod p ones, and multiply. We
have already proved irreducibility of the mod p versions

5 The partition S =
⋃
Si that corresponds to the true

factorisation.

Thanks to Tobias Nipkow for asking this explicitly.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
8 / 11



Bibliography I

J.A. Abbott, V. Shoup, and P. Zimmermann.
Factorization in Z[x ]: The Searching Phase.
In C. Traverso, editor, Proceedings ISSAC 2000, pages 1–7,
2000.

James Harold Davenport.
Proving an Execution of an Algorithm Correct?
In Catherine Dubois and Manfred Kerber, editors, Proceedings
CICM 2023, volume 14101 of Springer Lecture Notes in
Computer Science, pages 255–269, 2023.

W. Hart, M. van Hoeij, and A. Novocin.
Practical polynomial factoring in polynomial time.
In Proceedings ISSAC 2011, pages 163–170, 2011.

A.K. Lenstra, H.W. Lenstra Jun., and L. Lovász.
Factoring Polynomials with Rational Coefficients.
Math. Ann., 261:515–534, 1982.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
9 / 11



Bibliography II

K. Mehlhorn.
Certifying Algorithms.
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/

CertifyingAlgs.pdf, 2011.

P.M.A. Moore and A.C. Norman.
Implementing a Polynomial Factorization and GCD Package.
In Proceedings SYMSAC 81, pages 109–116, 1981.

D.R. Musser.
Multivariate Polynomial Factorization.
J. ACM, 22:291–308, 1975.

The FLINT team.
FLINT: Fast Library for Number Theory, 2023.
Version 2.9.0, https://flintlib.org.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
10 / 11

https://people.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgs.pdf
https://people.mpi-inf.mpg.de/~mehlhorn/ftp/CertifyingAlgs.pdf
https://flintlib.org


Bibliography III

H. Zassenhaus.
On Hensel Factorization I.
J. Number Theory, 1:291–311, 1969.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
11 / 11


