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General Situation

Do I believe the output from my (complicated, optimised,
unverified) computer algebra system?
See JHD’s paper at CICM 2023 [Dav23], but note that the same
question, in different settings, was asked by Mehlhorn [Meh11] in
1999.
[Dav23] looked at three examples.

Polynomial Factorisation f = f1f2 · · · fk and the fi is irreducible.

Integration The assertion “unintegrable” is correct.

Real Algebraic Geometry The assertion that the semi-algebraic
variety is empty (UNSAT) is correct.

The last is the most important question, but factorisation is easy
to explain and a good case study in its own right.
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Polynomial Factorisation

The base case is polynomials in Z[x ].

Problem (Factorisation)

Given f ∈ Z[x ], write f =
∏

fi where the fi are irreducible
elements of Z[x ].

Verifying that f =
∏

fi is, at least relatively, easy. The hard part is
verifying that the fi are irreducible. JHD knows of no
implementation of polynomial factorisation that produces any
evidence, let alone a proof, of this.
We may as well assume f is square-free (this would be a rather
separate verification question).
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Algorithm

The basic algorithm goes back to [Zas69]: step M is a later
addition [Mus75], and the H’ variants are also later.

1 Choose a prime p (not dividing the leading coefficient of f )
such that f (mod p) is also square-free.

2 Factor f modulo p as
∏

f
(1)
i (mod p).

M Take five p and compare the factorisations.
3 If f can be shown to be irreducible from modulo p

factorisations, return f .
4 Let B be such that any factor of f has coefficients less than B

in magnitude, and n such that pn ≥ 2B. [Landau–Mignotte]

5 Use Hensel’s Lemma to lift the factorisation to f =
∏

f
(n)
i

(mod pn)

H Starting with singletons and working up, take subsets of the

f
(n)
i , multiply them together and check whether, regarded as
polynomials over Z with coefficients in [−B,B], they divide f
— if they do, declare that they are irreducible factors of f .
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Algorithm Notes

H’ Use some alternative technique, originally [LLL82], but now
e.g. [ASZ00, HvHN11] to find the true factor corresponding

to f
(n)
1 , remove f

(n)
1 and the other f

(n)
i corresponding to this

factor, and repeat.

� In practice, there are a lot of optimisations, which would
greatly complicate a proof of correctness of an
implementation of this algorithm.

We found that, although the Hensel construction is basi-
cally neat and simple in theory, the fully optimised version
we finally used was as nasty a piece of code to write and
debug as any we have come across [MN81].

Since if f is irreducible modulo p, it is irreducible over the integers,
the factors produced from singletons in step 5 are easily proved to
be irreducible. Unfortunately, the chance that an irreducible
polynomial of degree n is irreducible modulo p is 1/n.
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Algorithm Notes

A factorisation algorithm could, even though no known
implementation does, relatively easily produce the required
information for a proof of irreducibility unless the recombination
step is required.

Note that verifying the Hensel lifting, the “nasty piece” from
[MN81] is easy: the factors just have to have the right
degrees from the factorisation of f (mod p) and multiply to
give f (mod pn).

� Building test cases for the various edge cases was extremely
difficult.

Step [H] is relatively easy to verify: this combination divides and
no smaller combination divides. The variants in [H’] are
interesting: I have not found an easy route.
If [H’] finds a factor that is a product of k p-adic factors, then we
can use [H] to verify this by checking that the 2k − 2 subsets do
not give factors.
But if [H’] says “irreducible”, I know no easy proof.
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Progress at Dagstuhl

1 We can extract from the implementation in FLINT [tea23] of
the algorithm with [H], at essentially no cost, the key data
that we believe a verifier would need to confirm the
irreducibility.

2 But this is not necessarily the most efficient verification.

3 We think that a more efficient verification would need
negligibly more work.

4 We haven’t built a verification.

5 The “hard” theorems are (being) stated (LEAN), but what
about the “easy” ones, mappings such as “regarded as
polynomials over Z with coefficients in [−B,B]”?

6 Needs more theorem prover input.

But We have discovered improvements to FLINT, and at least one
new research question in computer algebra.

+ FLINT also has [H’], but we haven’t looked at this yet.

James Davenportmasjhd@bath.ac.uk With Edgar Costa, Alex Best, Mario Carneiro

Proving an Execution of an Algorithm Correct? The case of Polynomial Factorisation
7 / 11



So what is the certificate?

1 The 5(?) Musser primes (or the useful subset)

2 The factorisations modulo these

* Need to verify that these are irreducible.

3 The chosen p and n

4 The set S of factors modulo pn

* Need to check they match the mod p ones, and multiply. We
have already proved irreducibility of the mod p versions

5 The partition S =
⋃
Si that corresponds to the true

factorisation.

Thanks to Tobias Nipkow for asking this explicitly.
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