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Notation

d The maximum degree (in each variable separately) of the
input polynomials.

l The maximum bit-length of the integer coefficients

m The number of (distinct) polynomials.

n The number of variables.

a The number of alternations of quantifiers. a ≤ n − 1.

q The number of equational constraints.

� This is the standard theory setting. Real problems tend to
involve rational functions, and rational, or even algebraic,
numbers.

(M,D) At most M sets, each of combined degree ≤ D [McC84].
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Doubly Exponential?

The complexity of QE (and hence CAD) is doubly exponential in n,
more precisely d2edm2em where ed and em depend non-trivially on n
(or on a).

[Col75] em ≤ n + O(1); ed ≤ log2 3n + O(1).

[McC84] Both bounded by n + O(1), conditional on no (awkward)
nullification.

[Laz94] (justified by [MPP19]) n + O(1) unconditionally.

[DH88] both ed and em were at least n/5 + O(1), with a being Θ(n)
(in fact 2n/5 + O(1))

[BD07] (again with a being Θ(n), this time 2n/3 + O(1)) that em was
at least n/3 + O(1), even if d = 1.

[BD07] em was at least n/3 + O(1), even if d = 1 (again with a being
Θ(n), this time 2n/3 + O(1)).

Numerous heuristics [HEW+19, e.g.], generally based on degrees of
polynomials, for choosing order of elimination etc..
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Graph Theory to the rescue?

Instead of considering degrees of the polynomials in F , consider
the graph G(F ) on {x1, . . . , xn} with an edge betwen (xi , xj) iff
there is a polynomial in F containing both xi and xj .
Connectedness?

Gröbner If G(F ) is not connected, the problems are
independent, and [Buc79, Criterion 1] will treat them
as such.

CAD Essentially independent, but this is hard to describe:
we have “the outer product” of the two (or more)
CADs. We definitely need to project one component
at a time.
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Graph Theory to the rescue continued

A graph G is chordal if every every > 3-cycle has a chord.
Equivalently, every induced cycle has length 3. Every graph G has
a chordal completion G.
Minimum chordal completion is NP-complete [Yan81], but that
doesn’t really worry me.
If this is the complete graph, then graph theory doesn’t seem to
help us: the exciting case is when G is smaller.
An ordering � on the vertices x1, . . . , xn is a perfect elimination
ordering if ∀i xi and its neighbours xj : xj ≺ xi form a clique. This,
and chordality, can be found efficiently [RTL76].

James DavenportJob at https://www.bath.ac.uk/jobs/Vacancy.aspx?ref=CC9078

Varieties of Doubly-Exponential behaviour in Quantifier Elimination and Cylindrical Algebraic Decomposition
6 / 32

https://www.bath.ac.uk/jobs/Vacancy.aspx?ref=CC9078


Graph Theory to the rescue continued

Non-trivial chordality has been exploited.

Regular Chains [Che20] shows how it can be exploited efficiently.

Gröbner Bases [CP16] consider “chordal elimination”. The
challenge here is that an S-polynomial can introduce
new edges in G.

CAD [LXZZ21] consider chordality here, ordering xi in a
perfect elimination ordering.

Here ed (and I think em) becomes the “tree depth” ≤ n,
assuming that these paths are compatible with any
quantifier structure.

What we currently lack is any view of how common in practice
these non-trivial chordal structures are.
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Equational Constraints and em

Any CAD algorithm based on iterated resultants is bound to have
em = n + O(1) in the worst case, because this is how the number
of polynomials grows as we take iterated resultants and
discriminants: from m to m(m+1)

2 as we eliminate one variable.
Starting with [McC99], we explore how, in constructing a CAD to
do QE for f (x) = 0 ∧ Φ(gi (x)), i.e. a CAD of f (x) = 0 rather than
the whole of Rn, it may not be necessary to consider resx(gi , gj),
but merely the resx(f , gi ). Geometrically, we do not care how gi
and gj interact off the variety, and algebraically we have rules for
commuting resultants/discriminants.
If applicable (these ideas were developed for the McCallum
projection, i.e. no nullification, and adapting to Lazard is
challenging [Nai21]), these reduce em from n + O(1) to
n − q + O(1).
There’s a snag if res(fi , fj) (the derived equational constraint in
fewer variables) has non-trivial content, which corresponds to ∨ —
back to QE?
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Iterated Resultants and ed

Any CAD algorithm based on iterated resultants is bound to have
ed = n + O(1) in the worst case, because this is how resultant
degrees grow.
If f , g , h have degree d, then resx(f , g) has degree 2d2 and
Pz := resy (resx(f , g), resx(f , h)) has degree 8d4. This despite the
fact that Bézout says there are O(d3) common zeroes.
P(z) has as roots, not just the z-coordinates of common zeros
{z : ∃y∃xf (x , y , z) = g(x , y , z) = h(x , y , z)}, but also
{z : ∃y (∃x1f (x1, y , z) = g(x1, y , z) ∧ ∃x2f (x2, y , z) = h(x2, y , z))}
— spurious zeroes.
[BM09] show that there is a suitable multivariate resultant which
has the “right” degree.
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Equational Constraints

We have seen that equational constraints can reduce em. But they
can also reduce ed as well.
[ED16, DE16, EBD20] consider the use of either multivariate
resultants [BM09] or Gröbner bases, and show that, under generic
assumptions, this will also reduce ed to n − q + o(1).
We need the “generic assumptions”, as there are issues when the
resultants (or Gröbner basis elements) are not primitive [DE16].
Nevertheless, all these techniques bring substantial improvements
in practice.
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VTS=Virtual Term Substitution, [Wei88] for linear

Here · · ·QnynΦ(y1, . . . , yn) in which yn occurs linearly can be
replaced by · · · Φ̂(y1, . . . , yn−1). This was extended in
[Wei94, Wei97] to the quadratic case and beyond, with details of
the cubic case being in [Koš16]. An extension to unbounded
degree is given in [LPJ14].
A crude description would be “substituting in the critical values
and their neighbours”, but the details are more subtle, hence
Weispfenning’s concept of virtual term substitution.
In particular, if yn occurs quadratically, with corresponding critical

values yn = 1
2a

(
−b ±

√
b2 − 4ac

)
, there might be 0, 1 or 2 critical

values, and we also need to worry about the case a = 0: hence
VTS has substitutions with guards, and the result of eliminating an
∃ quantifier, and hence a block of ∃, is a disjunction, often large.
However, VTS treats ∀ as ¬1∃¬2, so ¬2 turns the disjunction into
a conjunction, processing the ∃ builds a further disjunction on top
of this, which ¬1 turns back into a conjunction.
Each could have exponential blowup, so a ≥ 22a behaviour for em.
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CGB=Comprehensive Gröbner Bases (I) [Wei98, FIS15]

The key idea is this. We consider an “innermost block” in this
form:

∃x

 f1(y , x) = 0 ∧ · · · fr (y , x) = 0∧
p1(y , x) > 0 ∧ · · · ps(y , x) > 0∧
q1(y , x) 6= 0 ∧ · · · qt(y , x) 6= 0


where y represents the remaining variables, and
fi , pj , qk ∈ Q[y , x ] \Q[y ]. We introduce new variables z and w ,
with z ,w � x , and consider the polynomials

{f1, . . . , fr , z2
1p1 − 1, . . . , z2

s ps − 1︸ ︷︷ ︸
forcing positive

,w1q1 − 1, . . . ,wtqt − 1︸ ︷︷ ︸
forcing nonzero

}.

Let G = (Si ,Gi ) be a Comprehensive Gröbner System (with
parameters y) for this so that y space is partitioned by the Si . We
claim each Gi will be
{f ′1 , . . . , f ′r ′ , u1z

2
1 − p′1, . . . , usz

2
s − p′s , v1w1 − q′1, . . . , vtwt − q′t}.

Our answer will be
∨

i Ψi (Si ,Gi ): next two slides explain Ψi .
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Gi zero-dimensional (z ,w irrelevant for dimension)

If Gi = (1) then we return false. Otherwise recall
Gi = {f ′1 , . . . , f ′r ′ , u1z

2
1−p′1, . . . , usz2

s −p′s , v1w1−q′1, . . . , vtwt−q′t}.
Let I = 〈f ′1 , . . . , f ′r ′〉,

χ(x) =
∏

(e1,...,es)∈{0,1}s
χI

(p′1/u1)e1 ,··· ,(p′s/us)es (x) = x2sd +
2sd−1∑

0

aix
i .

The answer is Ψi := F(Si ) ∧ I2sd(ai ).
JHD: at least that’s my reconstruction. I can’t see where the wi

(the 6= 0) terms come in. Also, the subscript of χI
..., the

characteristic polynomial of M I
..., is not a polynomial.
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∃φ: Gi > 0-dimensional (z ,w irrelevant for dimension)

u := maximal independent variables (x ,Gi ,�). (B)
If u = x return SYNRAC(F(S) ∧ ∃xφ) [Wei98]
x ′ := x \ u; φ1 := Free(φ, x ′); φ2 := NonFree(φ, x ′);
ϕ := φ1∧Recurse(Si ,∃x ′φ2) (1)(A)
JHD: I think this means ϕ now only contains u-variables
Let ϕ1 ∨ · · · ∨ ϕl be a disjunctive normal form of ϕ. (C)
for 1 ≤ j ≤ l do

ϕ
(1)
j := Free(ϕ, u); ϕ

(2)
j := NonFree(ϕj , u);

ψj := ϕ
(1)
j ∧Recurse(Si ,∃uφ

(2)
j ) (2)(E)

Return Ψ := F(Si ) ∧ (ψ1 ∨ · · · ∨ ψl)
JHD: “Recurse” goes right back to the MainQE, note that call (1)
has pushed the u-variables into being parameters (I think) (D).
But somehow Si gets lost in these recursions: I hope I’ve added it
in the right place. Their Theorem 16 states that this does
terminate — far from obvious (F).
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CGB=Comprehensive Gröbner Bases (IV) [Wei98, FIS15]

A Recursing with S is, I think, my interpolation to make sense of
the recursions we’ll see later. S initially is R#y .

B There’s a lot of freedom here: ML?
C Note that our main recursion is on φ in conjunctive normmal

form (CNF), whereas here we convert to disjunctive normal
form (DNF) and implicitly back at the end of the block. Since
CNF↔DNF näıvely is exponential, this would provide an
exponential blowup at each ∃/∀ boundary, similar to [DH88].

D Therefore this recursion is on strictly fewer variables, since
dim > 0.

E Therefore this recursion is on strictly fewer variables, since

u 6= x . ϕ
(1)
j is free of u by construction, and free of x ′ since it

comes from φ1, so actually belongs in an outer block. We
might ask why such things exist, but they could be generated
by the recursion.

F But the two previous notes are probably key.
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Complexity of CGB

I know no results on the complexity of Comprehensive Gröbner
Bases.
Since we are doing Gröbner Bases, we might hope for singly
exponential behaviour at each block, and hence ed = O(a) rather
than O(n), but worst-case Gröbner bases can be doubly
exponential [MR13]. If we get O(a) behaviour, though, this does
not depend on having a lot of equational constraints.
We are doing CNF/DNF conversions at each quantifier alternation,
as with VTS, so this could be expected to give us em = O(a)
rather than O(n).
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Regular Chains [CM14b, CM14a]

Regular Chains/Triangular Decompositions are an alternative to
Gröbner bases, and write the solution as a union of triangular sets.
Very little is known about the complexity of Triangular
Decompositions. I believe that the upper bounds for Gröbner bases
[Dub90, etc.] still apply, but I haven’t seen a formal proof.
In the presence of equational constraints [BCD+14], we should get
the same improvement as Gröbner bases deliver.
There is probably a relationship between the different triangular
sets in a Triangular Decomposition and the sets Si in a
Comprehensive Gröbner Basis, but again I don’t know what this is.
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—————//////////Black swans [AL17]

“Average-case complexity without the black swans”: i.e. without
an exponentially-rare family that is worse than exponentially bad.

Definition

For k ∈ N let (Mk , µk) be a probability space and let Tk : Mk → R
be a µk -measurable function. We say that the family {Tk} has a
weak expectation of O(f (k)) if there exists a family of sets of
exceptional inputs,Ek ⊆ Mk , such that µk(Ek) = e−Ω(k) and the
conditional expectation E [Tk(x)|x /∈ Ek ] is bounded by O(f (k)).

Condition numbers inversely proportional to a distance to a
homogeneous algebraic set of ill-posed inputs;

Renegar’s condition number for conic optimization;

The running time of power iteration for computing a leading
eigenvector of a Hermitian matrix.

? Any such result in our area?
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Summary

Idea em ed
Collins n + O(1) (log2 3)n + O(1)
McCallum (but nullification) n + O(1) n + O(1)
Lazard [MPP19] n + O(1) n + O(1)
Equational Constraints (?) n − q + O(1) (?) n − q + O(1)
Virtual Term Substitution (?) O(a) challenges
Comprehensive Gröbner Bases (??) O(a) (??) O(a)–n + O(1)
Regular Chains (??) n − q + O(1) (??) n − q + O(1)

But Virtual Term Substitution (where applicable), Comprehensive
Gröbner Bases and Regular Chains all seem to be very fast in
practice.
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Conclusions/Questions

1 We need to understand the complexity of Virtual Term
Substitution.

2 What about unbounded degree: [LPJ14]? It is restricted to
univariates — is this inherent?

3 We need to understand the complexity of Comprehensive
Gröbner Bases.

4 We need to understand the complexity of Regular Chains.

5 We need to understand the inter-relationships between these
methods.

6 Are there any “weak average case complexity” results? The
examples of [BD07, DH88] seem very special.
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