
Symbolic Computation
(Computer Algebra)

James Davenport

University of Bath

16 November 2015

James Davenport Symbolic Computation(Computer Algebra)



Preamble

Generally talking about “polynomial” computer algebra:
Major packages: Maple and Mathematica (commercial); Reduce,
Macsyma; meta-package Sage
There’s also the group theory end of the world: GAP and MAGMA
Many specialist packages: F5, Singular and CoCoA for Gröbner
bases, QEPCAD, RedLog for real solving, and I’ve doubtless
omitted many others

James Davenport Symbolic Computation(Computer Algebra)



Notation (for complexity purposes)

m number of polynomials

n number of variables

d maximum degreee (in each variable separately)

l bit-length of coefficients (we will often not bother
with this, as most solving algorithms are O(l3))

t Number of non-zero terms.

James Davenport Symbolic Computation(Computer Algebra)



(Dense) polynomials

“Obviously” a vector of coefficients

Addition O(dl)

Multiplication School: O(d2l2); Karatsuba: O((dl)1.585); FFT:
O(dl log(dl) log log l)

Division the same

GCD the same × log d

But most problems aren’t dense: a dense polynomial has (d + 1)n

terms.

James Davenport Symbolic Computation(Computer Algebra)



(Sparse) polynomials [DC10]

“Obviously” a list of (exponent,coefficient) pairs

Addition O(tl)

Multiplication School: O(t3 + t2l2); Better O(t2(l2 + log t))

Division not the same at all: xn−1
x−1 = xn−1 + · · ·+ 1

D with remainder School: O(d3tl2), better O(d2t(l2 + log d))

Exact D We can stop if the coefficients grow too big [ABD85]
O(dt(dl2 + log min(d , t))); in fact
O(tf + tf /g tg (l2 + log min(tf /g tg )) [MP11]

GCD O(d4l2): some dependence on d is inherent [Sch03]:

gcd(xpq−1, xp+q−xp−xq+1) = xp+q−1−xp+q−2±· · ·−1

Open An algorithm for gcd(f , g) polynomial in
tf , tg , tgcd(f ,g).

James Davenport Symbolic Computation(Computer Algebra)



In practice

We compute polynomial gcd via modular methods

1 Compute gcd(f , g) modulo several pi

? How many? A priori bounds are usually too high, so the best
algorithms are adaptive

2 Discard those that have too high a degree

3 Use Chinese Remainder Theorem to produce gcd(f , g)
(mod

∏′ pi )
4 Interpret over Z and check

Same technique works in several variables, using y − vi as “primes”
The real challenge is multivariate sparsity: [Zip79] has an
algorithms that seems to be polynomial in d , t (and not dn)

James Davenport Symbolic Computation(Computer Algebra)



Polynomial Factoring (univariate)

Can’t use modular methods, as no idea which factor goes with
which (Z[x ]/

∏
pi is not a unique factorisation domain)

There are irreducible polynomials (e.g. x4 + 1) which factor
compatibly modulo every prime (no good primes!)

! rare in theory but common in practice [ABD85], especially
with algebraic numbers

Trying every combination of mod p factors is exponential

LLL was invented to make this polynomial, but O(d12)

There are better lattice-based methods these days [vH02]

James Davenport Symbolic Computation(Computer Algebra)



Polynomial Factoring (multivariate)

For reductions from multivariate to bivariate

(by replacing all the other variables by values)

almost all evaluations are good, in that the factorisation is the
same after evaluating

In practice we see the same reducing to univariate

Hence the real challenge is univariate, in theory

In practice there are substantial challenges especially over
sparsity [Wan78]

But Factoring is still best avoided, and implementations try to:
replacing “irreducible” by “square-free and relatively prime”
where possible

James Davenport Symbolic Computation(Computer Algebra)



Real Roots

Univariate A polynomial has d roots

Computed Sturm sequences, Thom’s lemma, Descartes Rule

Sparse A polynomial has ≤ 2t − 1 real roots

(Almost) no good, i.e. O(tk) not O(dk), algorithms
for isolating these

Multivariate again, should have low real complexity, but “change
of coordinates” destroys sparsity.

James Davenport Symbolic Computation(Computer Algebra)



Resultants and Discriminants

Resultant R(x) := Resy (f (x, y), g(x, y)) has as roots those
x : ∃y ∈ C : f (x, y) = g(x, y) = 0: common zeros =
crossings of surfaces

Discriminant D(x) = Discy (f (x, y)) = 1
lcy (f )

Res(f , ∂f∂y ) has as

roots those x : ∃y ∈ C : f (x, y) has a double root:
self-crossings or doubling-back

Degrees O(d2) and classical computing time O(d9l2) — modular
methods are generally used, but still expensive
Res(f1f2, g) = Res(f1, g)Res(f2, g);
Disc(f1f2) = Disc(f1)Disc(f2)Res2(f1, f2), hence we want to keep
polynomials in factored form
Iterated resultants also tend to factor also [BM09], generally into a
“good part” and a “bad part”
No good interaction with sparsity!

James Davenport Symbolic Computation(Computer Algebra)



Gröbner Bases

Many views and uses, but we can consider them as non-linear
analogue of Gaussian reduction to upper triangular form, but:

Might have more equations than variables:
{x2 − 1, (x − 1)(y − 1), y2 − 1} — Back-substitution by
Gianni–Kalkbrener Theorem [Gia89, Kal89]

This doesn’t work in dimension > 0 [FGT01]

Can have “mixed dimension” varieties:
〈(x + 1− y)(x − 6 + y), (x + 1− y)(y − 3)〉 has solution
x = y − 1 and (x , y) = (3, 3)

Theoretical complexity results are very bad, but these inputs
are “rare”

Modular (Chinese Remainder) approaches are difficult

James Davenport Symbolic Computation(Computer Algebra)



History of Quantifier Elimination

In 1930, Tarski discovered [Tar51] that the (semi-)algebraic
theory of Rn admitted quantifier elimination

∃xk+1∀xk+2 . . .Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xk)

“Semi” = “allowing >, ≤ and 6= as well as =”

Needed as ∃y : x = y2 ⇔ x ≥ 0

The complexity of this was indescribable

In the sense of not being elementary recursive!

In 1973, Collins [Col75] discovered a much better way:

Complexity (m polynomials, degree d , n variables, coefficient
length l)

(2d)2
2n+8

m2n+6
l3 (1)

Construct a cylindrical algebraic decomposition of Rn, sign
invariant for every polynomial

Then read off the answer

James Davenport Symbolic Computation(Computer Algebra)



What is a CAD?

A Cylindrical Algebraic Decomposition (CAD) is a mathematical
object. Defined by Collins who also gave the first algorithm to
compute one. A CAD is:

a decomposition meaning a partition of Rn into connected
subsets called cells;

(semi-)algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequalities;

cylindrical meaning the cells are arranged in a useful manner
— their projections are either equal or disjoint.

In addition, there is (usually) a sample point in each cell, and an
index locating it in the decomposition

James Davenport Symbolic Computation(Computer Algebra)



“Read off the answer”

Each cell is sign invariant, so the the truth of a formula
throughout the cell is the truth at the sample point.

∀xF (x)⇔ “F (x) is true at all sample points”

∃xF (x)⇔ “F (x) is true at some sample point”

∀x∃yF (x , y)⇔ “take a CAD of R2, cylindrical for y projected
onto x-space, then check

∀ sample x ∃ sample (x , y) : F (x , y) is true”: finite check

NB The order of the quantifiers defines the order of projection

So all we need is a CAD!

James Davenport Symbolic Computation(Computer Algebra)



The basic idea for CAD [Col75]

Rn Rn

Rn−1 Rn−1

Rn−2 Rn−2

R1 R1

Projection Lifting
(& Isolation)

Root Isolation

James Davenport Symbolic Computation(Computer Algebra)



So how do we project?
(Lifting is in fact relatively straight-forward)

Given polynomials Pn = {pi} in x1, . . . , xn, what should Pn−1 be?

Näıve (Doesn’t work!) Every Discxn(pi ), every Resxn(pi , pj)

i.e. where the polynomials fold, or cross: misses lots of
“special” cases

[Col75] First enlarge Pn with all its reducta, then näıve plus
the coefficients of Pn (with respect to xn) the
principal subresultant coefficients from the Discxn
and Resxn calculations

[Hon90] a tidied version of [Col75].

[McC88] Let Bn be a squarefree basis for the primitive parts of
Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every Discxn(bi ), Resxn(bi , bj) from Bn

[Bro01] Näıve plus leading coefficients (not squarefree!)

James Davenport Symbolic Computation(Computer Algebra)



Are these projections correct?

[Col75] Yes, and it’s relatively straightforward to prove that,
over a cell in Rn−1 sign-invariant for Pn−1, the
polynomials of Pn do not cross, and define cells
sign-invariant for the polynomials of Pn

[McC88] 52 pages (based on [Zar75]) prove the equivalent
statement, but for order-invariance, not
sign-invariance, provided the polynomials are
well-oriented, a test that has to be applied during
lifting.

But if they’re not known to be well-oriented?

[McC88] suggests adding all partial derivatives

In practice hope for well-oriented, and if it fails use Hong’s
projection.

[Bro01] Needs well-orientedness and additional checks

James Davenport Symbolic Computation(Computer Algebra)



What about the complexity?

If the McCallum projection is well-oriented, the complexity is

(2d)n2
n+7

m2n+4
l3 (2)

versus the original
(2d)2

2n+8
m2n+6

l3 (1)

and in practice the gains in running time can be factors of a
thousand, or, more often, the difference between feasibility and
infeasibility
“Randomly”, well-orientedness ought to occur with probability 1,
but we have a family of “real-world” examples (simplification/
branch cuts) where it often fails

James Davenport Symbolic Computation(Computer Algebra)



Need it be this hard?

The Heintz construction

Φk(xk , yk) :=

∃zk∀xk−1yk−1
[
yk−1 = yk ∧ xk−1 = zk ∨ yk−1 = zk ∧ xk−1 = xk

⇒ Φk−1(xk−1, yk−1)

]
If Φ1 ≡ y1 = f (x1), then Φ2 ≡ y2 = f (f (x2)),
Φ3 ≡ y3 = f (f (f (f (x3))))

[DH88] shows Ω
(

22
(n−2)/5

)
(using yR + iyI = (xR + ixI )

4)

[BD07] shows Ω
(

22
(n−1)/3

)
(using a sawtooth)

Hence doubly exponential is inevitable, but there’s a lot of room!
In fact, there are theoretical algorithms which are
singly-exponential in n, but doubly-exponential in the number of
∃∀ alternations

James Davenport Symbolic Computation(Computer Algebra)



Useful special cases

[McC99] “equational constraints” : when
Φ ≡ f (x , y , . . .) = 0 ∧ (. . .)

Note If Φ ≡ (f1(x , y) = 0 ∧ g1(x , y) < 0) ∨ (f2(x , y) =
0 ∧ g2(x , y) < 0, which has no obvious equational
constraint, we can consider (f1 · f2)(x , y) = 0 ∧ Φ,
which is equivalent (but higher degree)

[BDE+13] “truth table invariant CAD” treats this directly

[BDE+14] also handles the case where not every clause has an
equality (TTICAD)

Roughly speaking, the effect is to reduce n by 1, which square
roots the complexity

James Davenport Symbolic Computation(Computer Algebra)



An alternative approach [CMXY09]

Proceed via the complex numbers,

Rn Rn

Cn Cn

Rn−1 Rn−1

R1 R1

Projection Lifting

CCD

RRI

Do a complex cylindrical decomposition via Regular Chains
Can be combined with truth table ideas [EBC+14]

James Davenport Symbolic Computation(Computer Algebra)



Example Complex CD

root

c = 0

b = 0

2x = 0 2x 6= 0

b 6= 0

p = 0 p 6= 0

c 6= 0

b2 − 4c = 0

2x + b = 0 2x + b 6= 0

b2 − 4c 6= 0

p = 0 p 6= 0

Figure: Complete complex cylindrical tree for the general monic
quadratic equation, p := x2 + bx + c , under variable ordering c ≺ b ≺ x .

Note that b = 0 is only tested where relevant

James Davenport Symbolic Computation(Computer Algebra)



So how do I use these tools?

That’s actually a very good question: there’s a lot of choice in how
to phrase the question

1 Choice of variable ordering (where permitted)

2 Choice of equalities

3 Choice of overall technology (Projection/Regular Chains/. . . )

4 Choice of how the problem is posed

5 (including Gröbner pre-conditioning)

� Choice of software: no software has (even close to) all the
techniques, and each has extra “features”

These are not independent questions

James Davenport Symbolic Computation(Computer Algebra)



How might this look? Wilson’s thesis

James Davenport Symbolic Computation(Computer Algebra)



Variable ordering

Theorem ([BD07])

There are CAD problems doubly exponential (in n) for all
orderings, and other problems which are doubly exponential (in n)
for some orderings, but constant for others

How to tell which case we’re in?
How to choose the best (legal) ordering?
This was described in [HEW+14]:
a variety of heuristics, with a machine-learning meta-heuristic

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
I

J.A. Abbott, R.J. Bradford, and J.H. Davenport.
A Remark on Factorisation.
SIGSAM Bulletin 2, 19:31–33, 1985.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Cylindrical Algebraic Decompositions for Boolean
Combinations.
In Proceedings ISSAC 2013, pages 125–132, 2013.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
II

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Truth Table Invariant Cylindrical Algebraic Decomposition.
To appear in J. Symbolic Comp.:
http://arxiv.org/abs/1401.0645, 2014.

L. Busé and B. Mourrain.
Explicit factors of some iterated resultants and discriminants.
Math. Comp., 78:345–386, 2009.

C.W. Brown.
Improved Projection for Cylindrical Algebraic Decomposition.
J. Symbolic Comp., 32:447–465, 2001.

James Davenport Symbolic Computation(Computer Algebra)

http://arxiv.org/abs/1401.0645


Bibliography
III

C. Chen, M. Moreno Maza, B. Xia, and L. Yang.
Computing Cylindrical Algebraic Decomposition via Triangular
Decomposition.
In J. May, editor, Proceedings ISSAC 2009, pages 95–102,
2009.

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

J.H. Davenport and J. Carette.
The Sparsity Challenges.
In S. Watt et al., editor, Proceedings SYNASC 2009, pages
3–7, 2010.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
IV

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

M. England, R. Bradford, C. Chen, J.H. Davenport, M.M.
Maza, and D.J. Wilson.
Problem formulation for truth-table invariant cylindrical
algebraic decomposition by incremental triangular
decomposition.
In S.M. Watt et al., editor, Proceedings CICM 2014, pages
45–60, 2014.

E. Fortuna, P. Gianni, and B. Trager.
Degree reduction under specialization.
J. Pure Appl. Algebra, 164:153–163, 2001.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
V

P. Gianni.
Properties of Gröbner bases under specializations.
In Proceedings EUROCAL 87, pages 293–297, 1989.

Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt et al., editor, Proceedings CICM 2014, pages
92–107, 2014.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
VI

H. Hong.
Improvements in CAD-Based Quantifier Elimination.
PhD thesis, OSU-CISRC-10/90-TR29 Ohio State University,
1990.

M. Kalkbrener.
Solving systems of algebraic equations by using Gröbner bases.
In Proceedings EUROCAL 87, pages 282–292, 1989.

S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic
Decomposition of Three-dimensional Space.
J. Symbolic Comp., 5:141–161, 1988.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
VII

S. McCallum.
On Projection in CAD-Based Quantifier Elimination with
Equational Constraints.
In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149,
1999.

M. Monagan and R. Pearce.
Sparse polynomial division using a heap.
J. Symbolic Comp., 46:807–822, 2011.

A. Schinzel.
On the greatest common divisor of two univariate polynomials,
I.
In A Panorama of number theory or the view from Baker’s
garden, pages 337–352. C.U.P., 2003.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
VIII

A. Tarski.
A Decision Method for Elementary Algebra and Geometry.
2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness &
J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp.
24–84., 1951.

M. van Hoeij.
Factoring polynomials and the knapsack problem.
J. Number Theory, 95:167–189, 2002.

P.S. Wang.
An Improved Multivariable Polynomial Factorising Algorithm.
Math. Comp., 32:1215–1231, 1978.

James Davenport Symbolic Computation(Computer Algebra)



Bibliography
IX

O. Zariski.
On equimultiple subvarieties of algebroid hypersurfaces.
Proc. Nat. Acad. Sci., 72:1425–1426, 3260, 1975.

R.E. Zippel.
Probabilistic Algorithms for Sparse Polynomials.
In Proceedings EUROSAM 79, pages 216–226, 1979.

James Davenport Symbolic Computation(Computer Algebra)


