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Plan of Talk

1 UNSAT in SAT-Solving Contests

2 UNSAT in SMT: Prior work

3 The QF_NRA (Quantifier-Free Nonlinear Real Arithmetic)
challenges

4 QF_NRA methodologies

5 CDCAC — Conflict-Driven Cylindrical Algebraic Coverings

6 Way forward?
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UNSAT in SAT-Solving Contests

SAT is easy to demonstrate — give the assignment

2013 Contestants in UNSAT track must also return proofs
of UNSAT

2020 All (sequential?) tracks require proofs of UNSAT

Proofs (sometimes >100GB) are verified offline [HJS18]

DRAT is the standard format (although there are some
flavours [RB19])
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UNSAT in SMT: prior work

Good idea! SMT-LIB Language (v2.6) [BFT16] specifies API
commands for requesting and inspecting proofs from
solvers

but sets no requirements on the form those proofs take

[BdF15] summarises some of the requirements, challenges and
various approaches taken to proofs in SMT

LFSC [SRT+12]: Logical Framework with Side Conditions

veriT [BBFF20]: linear arithmetic; proofs verifiable in
Isabelle/HOL and Coq
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The QF NRA Challenges

[BdF15] “since in SMT the propositional and theory reasoning
are not strongly mixed, an SMT proof can be an
interleaving of SAT proofs and theory reasoning
proofs”

[BdF15] “the main challenge of proof production is keeping
enough information to produce proofs”

QF NRA Actually providing the theory proofs can be a
challenge

This is the main topic of this talk.
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The QF NRA Methodology

Any SMT solver which claims to tackle this logic completely relies
in some way on the theory of Cylindrical Algebraic Decomposition
(CAD) [Col75].

1 Decompose Rn into a finite number of disjoint regions, on
each of which the truth of the constraints is constant.

2 Take a sample point in each region.

* In practice the sample points are built at the same time as the
regions.

3 Now we have a finite set of theory values and the SMT
methodology applies.

* In practice, we will try to merge the phases, and do the
decomposition incrementally [KÁ20].

� How do we formally prove this decomposition? Attempts to
prove the correctness [Mah06, Mah07, CM10, CM12] have
failed, essentially on the topology.
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More QF NRA: NLSAT etc.

[JdM12] nlsat: Allow the Boolean model and the theory
model to develop simultaneously.

± very powerful, but contradicts “not strongly mixed”:
not obvious how to construct the proof.

[dMJ13] Generalises this to “the model constructing
satisfiability calculus (mcSAT) framework”.

+ The search for a Boolean model and a theory model
are mutually guided by each other away from
unsatisfiable regions.

1) Boolean conflicts are generalised using propositional
resolution

2) Theory conflicts: generalise the sample point to a
region containing the point on which the same
constraints fail for the same reason.

– Also contradicts “not strongly mixed”:
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CDCAC: Cylindrical Algebraic Coverings [ÁDMK21]

Essentially, a depth first search is performed according to the
theory variables.

Conflicts over particular assignments are generalised to cells
until a covering of a dimension is obtained,

and then this covering is generalised to a cell in the dimension
below.

And repeat until R1 is covered.

Like CAD Decompose Rn into a finite number of disjoint//////
regions, on each of which the truth of the constraints
is constant.

Unlike NLSAT Build the cells cylindrically, so the proof that
they’re a covering is easy.

Like both Correctness of the algorithm relies on CAD theory, so
beyond current proof theory to prove
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Why Cylindrical Algebraic Coverings? [ÁDE+20]

Unike CAD (more like NLSAT) each cell is built to generalise a
specific conflict, so has a local rationale.

[ÁDE+20] The trace of a CDCAC computation appears far
closer to a human derived proof than any of the
other algorithms.

Hence There’s another option: verifying a specific CDCAC
computation, rather than the algorithm.

1 Verify that the set of cells is a covering (recursively in
dimension).

2 For each cell, verify that the sample point is a conflict which
extends over the whole cell.

Hope that these proofs are easier to do in a formal system (no
topology).

Fits the SMT-with-proof methodology.

ADEK
Proving UNSAT in SMT: Quantifier Free Non-Linear Real Arithmetic
9 / 21



QF NRA: CAD is not the only option

Above “Any complete solver relies on CAD”.

True but many incomplete methods work very effectively,
notably Virtual Term Substitution (VTS) [Ton20].

VTS transforms a CAD problem in x1, . . . , xn, where xn is
linear or quadratic, into a problem in x1, . . . , xn−1.

VTS And if xn−1 is linear or quadratic, repeat . . . .

CAD When this runs out of steam

Unclear (to say the least) how this would fit into the
SMT-with-proof methodology.

Also other transformations: Φ(x1, . . . , xn−1, x
3
n ) is SAT iff

Φ(x1, . . . , xn−1, x
′
n) is SAT, but this can reduce the

number of cells required doubly-exponentially in n.
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Way forward

1a. Work with theorem provers to clarify the “hope” that
these proofs are easy in a formal system.

1b. Work inside CDCAC to actually extract the proof
“clues”.

2. Put these together to prove “theory leaves” of an
SMT proof.

3. Integrate with the Boolean part to produce a true
SMT proof.

4. Worry about systematising this — build on existing
SMT-LIB APIs.

5. Worry about VTS and other “non-fitting” heuristics.

Volunteers/ expressions of interest welcome, especially 1a and
descendants.
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A Ph.D. Opportunty

Fully Funded PhD Position available at Coventry to work on
Machine Learning to Improve Symbolic Integration and Symbolic
Simplification. Sponsored by Maplesoft.
https://tinyurl.com/3exmk9vk

Deadline to Apply: 13th September 2021
Interviews and Decision: End September
PhD Start: Jan 2022
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E. Ábrahám, J.H. Davenport, M. England, G. Kremer, and
Z. Tonks.
New opportunities for the formal proof of computational real
geometry?
In P. Fontaine, K. Korovin, I.S. Kotsireas, P. Rümmer, and
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