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Plan of Talk

1 Effective Algebra requires choices

2 Choices of Orderings

3 Graph Theory?

4 Conclusions and Thanks
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Effectiveness imposes choices

For mathematicians, commutative algebra is in k[x1, . . . , xn], with
no attention paid to the ordering of the xi . Most definitions and
theorems live in this world. Operations, from the basic +,−,× to
√

(finding the radical of an ideal), are well-defined.
But the computer scientist lives in a world of data structures, and
wants accessors such as “leading coefficient”. Furthermore, the
search for algorithms leads us (Thanks, Bruno) to concepts like
Gröbner base.
The most fundamental question:

Distributed : k[x1, . . . , xn], which is typically how the
mathematician defines the multivariate polynomials
— Gröbner bases;

Recursive : k[x1] . . . [xn], which is typically how one proves that
polynomials over a Noetherian ring are Noetherian
(for example) — Regular Chains, Cylindrical
Algebraic Decomposition.

James Davenport Structure in Polynomial Systems 3 / 18



Choice of variable order

Even in the recursive format, we have to choose an order: is it
k[x1] . . . [xn], or k[xn] . . . [x1], or any of the n! orders.

Abstractly the choice doesn’t matter, as polynomial rings, they
are all isomorphic.

Often it doesn’t matter computationally

Sometimes it is fundamental [BD07, Theorem 7]: a polynomial p
in 3n + 4 variables such that any CAD, w.r.t. one
order, of R3n+4 sign-invariant for p has O

(
22

n)
cells,

but w.r.t. another order has 3 cells.

Hence numerous heuristics to choose the order
[DSS04, Bro04]

And an interest in machine learning for orders [HEW+19].
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The Polynomial

p := xn+1
((

yn−1 − 1
2

)2
+ (xn−1 − zn)2

)(
(yn−1 − zn)2 + (xn−1 − xn)2

)
+
∑n−1

i=1 x i+1
(

(yi−1 − yi )
2 + (xi−1 − zi )

2
)(

(yi−1 − zi )
2 + (xi−1 − xi )

2
)

+x
(

(y0 − 2x0)2 +
(
α2 + (x0 − 1

2)
)2)×(

(y0 − 2 + 2x0)2 +
(
α2 + (x0 − 1

2)
)2)

+ a.

The bad order (eliminating x , then y0, α, x0, z1, y1, z1, . . .,
xn, a) needs O

(
22

n)
(Maple: 141 when n = 0) cells.

Any order eliminating a first says that R3n+3 is
undecomposed, and the only question is p = 0, which is linear
in a, and we get three cells: p < 0, p = 0 and p > 0.
However, if we replace a by a3, the topology is essentially the
same, but the discriminant is no longer trivial, and the “good”
order now takes 213 cells in Maple.
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Choice of monomial order

In the distributed case, we need to do more than order the
variables — we have to order the monomials.
For example, does x2y come before or after xy10?. x2y wins
lexicographically, but xy10 wins with total degree. As we know,
there is more to ordering than just the variables and
degree/lexicographic.
So how do you explain the difference between degree/lexicographic
and degree/reverse lexicographic with the variables reversed?
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Explaining monomial order (Thanks, Franz)

For three variables, the monomials of degree three are ordered as

x3 > x2y > x2z > xy2 > xyz > xz2 > y3 > y2z > yz2 > z3

under grlex, but as

x3 > x2y > xy2 > y3 > x2z > xyz > y2z > xz2 > yz2 > z3

under tdeg.
One way of seeing the difference is to say that grlex with
x > y > z discriminates in favour of x , whereas tdeg with
z > y > x discriminates against z . This metaphor reinforces the
fact that there is no difference with two variables.

James Davenport Structure in Polynomial Systems 7 / 18



Choice of monomial order isn’t all

Buchberger’s Algorithm requires us to test all pairs S(gi , gj), but
the order in which we do this can be critical for performance.
[Buc79, generalised in [BF91]] gives useful criteria for eliminating
some pairs, and maximal effectiveness of these imposes some
constraints, and we say that we have a normal selection strategy if,
at each iteration, we pick a pair (i , j) such that
lcm(lm(gi ), lm(gj)) is minimal with respect to the ordering in use.
Given a tie between (i , j) and (i ′, j ′) (with i < j , i ′ < j ′), we
choose the pair (i , j) if j < j ′, otherwise (i ′, j ′) [GMN+91].
A variant is to use a “sugar” strategy, where we consider, not the
actual degree of a polynomial, but its “sugar” [GMN+91], i.e. the
degree it would have had if we’d homogenised.
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Choice of S-polynomial order is still active

[PSHL20] did substantial machine-learning experiments on
Buchberger’s Algorithm as applied to binomial ideals. They
observed that “the agent prefers pairs whose S-polynomials are low
degree”.
As they stated, this is a new strategy, and seems, on their data, to
be an improvement, but this result is subject to confirmation on
larger runs.
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Graph Theory to the rescue?

Instead of considering degrees of the polynomials in F , consider
the graph G(F ) on {x1, . . . , xn} with an edge betwen (xi , xj) iff
there is a polynomial in F contaning both xi and xj .
Connectedness?

Gröbner If G(F ) is not connected, the problems are
independent, and [Buc79, Criterion 1] will treat them
as such.

CAD Essentially independent, but this is hard to describe:
we have “the outer product” of the two (or more)
CADs. We definitely need to project one component
at a time.
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Graph Theory to the rescue continued

A graph G is chordal if every every > 3-cycle has a chord.
Equivalently, every induced cycle has length 3. Every graph G has
a chordal completion G.
Minimum chordal completion is NP-complete [Yan81], but that
doesn’t really worry me.
If this is the complete graph, then graph theory doesn’t seem to
help us: the exciting case is when G is smaller.
An ordering � on the vertices x1, . . . , xn is a perfect elimination
ordering if ∀i xi , xi and its neighbours xj : xj ≺ xi form a clique.
This, and chordality, can be found efficiently [RTL76].

James Davenport Structure in Polynomial Systems 11 / 18



Graph Theory to the rescue continued

Non-trivial chordality has been exploited.

Regular Chains [Che20] shows how it can be exploited efficiently.

Gröbner Bases [CP16] consider “chordal elimination”. The
challenge here is that an S-polynomial can introduce
new edges in G.

CAD [LXZZ21] consider chordality here, ordering xi in a
perfect elimination ordering.

What we currently lack is any view of how common in practice
these non-trivial chordal structures are.
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Thanks and Conclusions

Thanks for Franz for many years of interaction,

and his explanations to me,

and his service to the computer algebra community in Linz, in
Austria and in the world.

But there are still many unsolved problems for him to look at
it in his “retirement”.
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