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Notation

a The number of alternations of quantifiers: ∃∀∀∃ has a = 2.

c The number of equational constraints.

d The maximum degree of the polynomials (in any specific xi ,
not total degree)

l Maximum bit-length of coefficients

m Number of polynomials.

n Number of variables x1, . . . , xn.

s Number of iterations of the Heintz construction [Hei83].
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McCallum’s Notation [McC84]

Relatively prime square-free decompositions of sets of polynomials
are an important requirement in many of these algorithms.
But this may increase the number of polynomials, and isn’t
guaranteed to reduce the degree, so is a nuisance for complexity
theory.

Notation (McCallum)

We say that a set S ⊂ K [x1, . . . , xn] has the (M,D) property if it
can be partitioned into ≤ M sets, and the product of the
polynomials in each set has degree ≤ D.

Proposition

The set of discriminants of an (M,D) set is an (M, 2D2) set.

Proposition

The set of resultants of an (M,D) set is an (12M(M − 1), 2D2) set
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Introduction/History

1951 [Tar51] shows that quantifier elimination in Q[x1, . . . , xn] is
decidable.

1975 [Col75] produces “cylindrical algebraic decomposition” with
doubly exponential complexity (2n + O(1)). See also [Wüt76].

* Every time we eliminate a variable, we square both d and m
(at least).

1984 [McC84] if the problem is “well-oriented” (certain polynomials
don’t vanish on certain varieties), then doubly exponential
complexity (/\2n + O(1)).

1986 JHD sits down with Joos Heintz and drafts [DH88] showing
that real quantifier elimination has doubly exponential lower
complexity (15n + O(1)).

2019 [MPP19] justified the Lazard projection/lifting [Laz94]:
/\2n + O(1) without a well-oriented requirement.
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The Heintz Construction [Hei83]

f2(z1, z2) := ∃y∀x1∀x2 (((x1 = z1) ∧ (x2 = y))∨
((x1 = y) ∧ (x2 = z2))⇒ f1(x1, x2))

simplifies to

f2(z1, z2) := ∃y f1(z1, y) ∧ f1(y , z2)

If f1(x1, x2) is of the form x1 = g(x2), then f2 is z1 = g(g(z2)), f3
is x1 = g(· · · g(︸ ︷︷ ︸

×4

x2) · · · ), f4 is z1 = g(· · · g(︸ ︷︷ ︸
×16

z2) · · · ), etc.
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Davenport–Heintz Application [DH88]

We used z1,R , z1,I rather than just z1 (also z2, x1, x2, y), and
f1(x1,R , x1,I , x2,R , x2,I ) is the ∧ of the real and imaginary parts of

(x1,R + ix1,I )
4 = x2,R + ix2,I .

f2 is then ∃y : z41 = y ∧ y4 = z2 (in complexes) so z161 = z2. In
reals this is ∧ of the real and imaginary parts of
(z1,R + iz1,I )

16 = z2,R + iz2,I , at the cost of six quantifiers (and
two alternations), and the construction can be repeated (swapping
x and z).
We set the last z2 to be 1, and have constructed the 42

s
complex

roots of unity with s iterations.
In fact it can be brought down to five quantifiers, giving a lower
bound double exponent of 1

5n + O(1).
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“Doubly Exponential” versus Bézout [Béz79]

But the Bézout bound is singly exponential!
Suppose f , g , h have degree d in each variable (x , y , z).
Then resx(f , g) has degree 2d2 and is zero at
{(y , z)|∃x : f (x , y , z) = g(x , y , z) = 0}.
Then resy (resx(f , g), resx(f , h)) has degree 8d4 and is zero at
{z |∃y(∃x1 : f (x1, y , z) = g(x1, y , z) = 0) ∧ (∃x2 : f (x2, y , z) =
h(x2, y , z) = 0)}: both the genuine “triple zeros” (x1 = x2) and
spurious zeros.
The Boolean structure of the Heintz construction allows us to
leverage the spurious zeros, and hence we get the double
exponential behaviour.
However, if we have a simple situations and equational constraints,
Gröbner bases can be very useful [EBD20].
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A note on satisfiability

What if one solution is enough? Although we have constructed

z4
2s

1 = z2 in s iterations of the Heintz construction, or the 42
s

roots of unity, it can be objected that 1 is still a solution.
If we add that 0 < z1,R < 1, this rules that (and −1,±i out, but
still allows the relatively simple 1+i√

2
. To rule this out, we need

tighter bounds, and it would seem that a difficult example (rather
than all examples) requires high-complexity inequalities.
There is another solution: at the cost of a constant overhead, we

can ask for z4
2s

1 = z2 ∧ z4
2s−1

1 6= z2, which means we have solutions
all of which are defined by truly high-degree polynomials.

Problem

Find a neat formulation of this construction, in particular the
growth in l .
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Brown–Davenport [BD07]

Instead we let

f1(x1, x2) = (x1 ≤
1

2
∧ x2 = 2x1) ∨ (x1 >

1

2
∧ x2 = 2− 2x1)

(a
∧

shape). Then x2 = 1
2 has two solutions (x1 = 1

4 ,
3
4) and as we

iterate, we get 22
s

solutions, at odd
22s+1 ∈ [0, 1].

Note that l = 2s + 1 is only singly exponential, and satisfiability is
relatively simple.
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Brown–Davenport example [BD07, Theorem 7]

The ordering among the xi can be crucial.

[BD07] This exhibits a polynomial p in 3n + 4 variables such
that any CAD, w.r.t. one order, of R3n+4

sign-invariant for p has O
(
22

n)
cells, but w.r.t.

another order has 3 cells.

Hence numerous heuristics to choose the order
[DSS04, Bro04, and many more]

And an interest in machine learning for orders [HEW+19].
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The Polynomial

p := xn+1
((

yn−1 − 1
2

)2
+ (xn−1 − zn)2

)(
(yn−1 − zn)2 + (xn−1 − xn)2

)
+
∑n−1

i=1 x i+1
(

(yi−1 − yi )
2 + (xi−1 − zi )

2
)(

(yi−1 − zi )
2 + (xi−1 − xi )

2
)

+x
(

(y0 − 2x0)2 +
(
α2 + (x0 − 1

2)
)2)×(

(y0 − 2 + 2x0)2 +
(
α2 + (x0 − 1

2)
)2)

+a.

The bad order (eliminating x , then y0, α, x0, z1, y1, z1, . . .,
xn, a) needs O

(
22

n)
(Maple: 141 when n = 0) cells.

Any order eliminating a first says that R3n+3 is
undecomposed, and the only question is p = 0, which is linear
in a, and we get three cells: p < 0, p = 0 and p > 0.
However, if we replace a by a3, the topology is essentially the
same, but the discriminant is no longer trivial, and the “good”
order now takes 213 cells in Maple.
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More application of Heintz?

D–Heintz Used a complex polynomial (real and imaginary
parts), hence 1

5n + O(1).

+ Doubly exponential degree for a single solution.

Brown–D Used a simple sawtooth over the reals, hence
1
3n + O(1) (the natural limit of Heintz).

– Each solution is only singly exponential.

? Are there examples with both properties?

Probably so, but requires understanding
f (f (· · · f (︸ ︷︷ ︸
×22s

x) · · · ) for suitable f :

?? can we force this irreducible, very close roots etc.
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Graph Theory to the rescue?

Instead of considering degrees of the polynomials in F , consider
the graph G(F ) on {x1, . . . , xn} with an edge betwen (xi , xj) iff
there is a polynomial in F contaning both xi and xj .
Connectedness?

Gröbner If G(F ) is not connected, the problems are
independent, and [Buc79, Criterion 1] will treat them
as such.

CAD Essentially independent, but this is hard to describe:
we have “the outer product” of the two (or more)
CADs. We definitely need to project one component
at a time.

Problem

Recognise, and treat effectively, this case, also “nearly
disconnected” (see next)

Davenport
Varieties of Doubly-Exponential Behaviour in Cylindrical Algebraic Decomposition
14 / 32



Graph Theory to the rescue continued

A graph G is chordal if every > 3-cycle has a chord. Equivalently,
every induced cycle has length 3. Every graph G has a chordal
completion G.
Minimum chordal completion is NP-complete [Yan81], but that
doesn’t really worry me.
If this is the complete graph, then graph theory doesn’t seem to
help us: the exciting case is when G is smaller.
An ordering � on the vertices x1, . . . , xn is a perfect elimination
ordering if ∀i xi and its neighbours xj : xj ≺ xi form a clique. This,
and chordality, can be found efficiently [RTL76].
Let n′ be the maximal length of a path from x1 to xn in G
following �.
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Graph Theory to the rescue continued

Non-trivial chordality has been exploited.

Regular Chains [Che20] shows how it can be exploited efficiently.

Gröbner Bases [CP16] consider “chordal elimination”. The
challenge here is that an S-polynomial can introduce
new edges in G.

CAD [LXZZ21] consider chordality, ordering xi in a perfect
elimination ordering, then essentially use the same
algorithm.

Double exponent is now n′ rather than n (polynomials “drop
through” layers!).

� The quantifier structure may be incompatible with
the perfect elimination ordering.

What we currently lack is any view of how common in practice
these non-trivial chordal structures are, but they are related to
“nearly disconnected” G.
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Equational Constraints

[Col98] What if our formula Φ is f = 0 ∧ Φ̂, where Φ̂ involves m − 1
polynomials gi?

[McC99] Answers this: we only need O(m) resx(f , gi ), not O(m2)
resx(gi , gj), since

resx(gi , gj)|f=0 ∝ resy (resx(f , gi ), resx(f , gj). (1)

Means that, after the x projection, we only have O(m)
polynomials not O(m2).

[McC01] Generalises to f1 = 0 ∧ · · · ∧ fc = 0 ∧ Φ̂.

+ Reduces the double exponent of m from n to n − c.

[BDE+16] Generalises to where only part of the formula has equational
constraints: “truth-table invariant CAD”

[EBD20] Can use Gröbner bases, rather than just iterated resultants, to
reduce degree growth, ideally the double exponent of d
becomes n − c.

But All this is for the McCallum projection, i.e. well-oriented.
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Doesn’t Lazard projection/lifting eliminate “well-oriented”?

+ Yes, for straight cylindrical algebraic decomposition

But if f (x , y , z , . . .) vanishes identically on some surface
S(y , z , . . . ), the constant of proportionality in (1) is 0, and we
learn nothing about resx(gi , gj) from resx(f , xi ).

� “Nullification” has come back to bite us, but only nullification
of f , not the gi .

Call S the foot of the curtain f = 0 [NDS20].

dim(S) The case dim(S) = 0 is tractable [Nai21] — see that thesis
for more details of dim(S) > 0.
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Challenges

1 More applications of Heintz construction.

2 The argument in [EBD20], that Gröbner bases reduced degree
growth, depended on genericity: what if one has doubly
exponential growth in Gröbner degree [MR13]? Being radical
doesn’t necessarily help [Chi09].

3 Curtains with dim(S) > 0.

4 What are “typical” problems for QE/CAD — note many
verification examples are purely existential, but want a proof
of non-satisfiability [ADEK21].

Hope Quantifier Elimination has weak singly exponential complexity
in the sense of [AL15], i.e. the doubly exponential examples
are exponentially rare.
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Q&A

? Any questions?
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ideals.
J. Symbolic Comp., 49:78–94, 2013.

A.S. Nair.
Exploiting Equational Constraints to Improve the Algorithms
for Computing Cylindrical Algebraic Decompositions.
PhD thesis, University of Bath, 2021.

A.S. Nair, J.H. Davenport, and G.K. Sankaran.
Curtains in CAD: Why Are They a Problem and How Do We
Fix Them?
In Proceedings ICMS 2020, volume 12097 of Springer Lecture
Notes in Computer Science, pages 17–26. Springer, 2020.

Davenport
Varieties of Doubly-Exponential Behaviour in Cylindrical Algebraic Decomposition
30 / 32



Bibliography XI

Donald J Rose, R Endre Tarjan, and George S Lueker.
Algorithmic aspects of vertex elimination on graphs.
SIAM Journal on computing, 5(2):266–283, 1976.

A. Tarski.
A Decision Method for Elementary Algebra and Geometry.
2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness &
J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp.
24–84., 1951.

H.T. Wüthrich.
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