
Defining Mathematical Properties

James Davenport 1

7 July 2014

1Thanks to: Arjeh Cohen for first raising the question, many OpenMathers
over the years, and Lars Hellström for “Varieties”

Davenport Defining Mathematical Properties



Background

OpenMath symbols OMS are defined in Content Dictionaries
(CDs), user-specified and extensible
With symbols, they have CMPs (Commented Mathematical
Properties), which are text, and FMPs (Formal Mathematical
Properties), which are OpenMath
This paper is concerned purely with FMPs

Davenport Defining Mathematical Properties



A Little History

1999: AMC/MK “Defining Mathematical Properties” paper

• Various (contradictory) objections — see paper

2003: JHD “understands the issue better”

2007: MKM Further presentation

2008 Further inconclusive discussion

2014 This paper

Davenport Defining Mathematical Properties



(JHD’s) four kinds of OMS

1 Those that are fundamentally primitive, and not defined at all.
They may still have FMPs, but these FMPs are merely about
them, rather than defining the symbol. An example would be

<OMS name="set" cd="set1"/>.

2 Those that OpenMath treats as primitive, and not defined at
all in OpenMath. These might not be primitive in
mathematics, but OpenMath has decided not to define them.
An example would be

<OMS name="exp" cd="transc1"/>.

3 At the other end of the spectrum, there are those objects that
OpenMath defines (because mathematicians use them) but
which are logically redundant, such as sin or csc.

4 Symbols defined recursively in terms of themselves and more
primitive objects, e.g. n! as n==0?1:n*(n-1)!

Hence 5! can be worked out, but not n! (except in terms of
fixed points/Y )

Davenport Defining Mathematical Properties



Type 2 Expanded

Those that OpenMath treats as primitive, and not defined at all in
OpenMath. These might not be primitive in mathematics, but
OpenMath has decided not to define them. They may still have
FMPs, but these FMPs are merely about them, rather than
defining the symbol. An example would be

<OMS name="exp" cd="transc1"/>,

whose only FMP is a representation of
∀k ∈ Z exp(z + 2kπi) = exp(z) (which is equally true of 2 exp(z)
and exp(2z) for example).

Davenport Defining Mathematical Properties



Type3 Expanded

At the other end of the spectrum, there are those objects that
OpenMath defines (because mathematicians use them) but which
are logically redundant. An example of this is

<OMS name="sin" cd="transc1"/>,

whose FMP is a representation of sin(x) = exp(ix)−exp(−ix)
2i , which

means that all occurrences of sin can be removed from an
OpenMath object without changing the semantics. If the CD
specified this, a system which encountered a symbol like this could
rewrite it knowing that there was no semantic loss.
If it felt that sin is still “important”, and complex exponentials are
not the right response to a real function, how about csc, which can
be perfectly encapsulated via csc(x) = 1

sin x ?

Davenport Defining Mathematical Properties



Type 4 Expanded

It would be possible2 (in fact the definition in integer1 is not of
this form, but rather in terms of products), to define

<OMS name="factorial" cd="integer1"/>

(whose STS states that it is a function N→ N) with an FMP
encoding the recursive definition: n==0?1:n*(n-1)!

In this case, it is possible to replace any particular numerical
factorial by a computation, but it is impossible to replace, say n!
with a definition not involving factorials (unless one extracts some
kind of Y -expression from that recursive definition, which is mere
semantic trickery).

2If it is argued that this is artificial, since this is not in fact the FMP,
consider the example of Stirling1 in combinat1, whose FMP is the encoding
of Stirling1(n,m) =

∑n−m
k=0 (−1)k ∗ binomial(n − 1 + k, n −m + k) ∗

binomial(2n −m, n −m − k) ∗ Stirling2(n,m).
Davenport Defining Mathematical Properties



The OpenMath dilemma

The notation of mathematics is incredibly varied, and new
notations and concepts are permanently being introduced. This
poses problems for OpenMath’s goal of encouraging
interoperability between tools, and future-proofing of data
Equally, people have different views of mathematics, e.g. Real
Analysis/Complex Analysis, and this colours people’s views of what
is “fundamental”
In 2007, CSC distinguished three levels: notation (or presentation),
content and logic. OpenMath, he thought, does well at
distinguishing content from notation. He then asked whether
DefMP wasn’t mixing the last two — how can I interpret your
DefMP if I don’t know your logic? JHD admitted that this might
be a problem for type 4 symbols. Type 3 symbols have a purely
extensional definition, so the logic used should be irrelevant

Davenport Defining Mathematical Properties



Kinds of FMP: 2008 Proposal

At the moment, the distinction we have made above is purely
informal, and there are no clues in the CD as to the meaning of
any FMP. We now propose that some FMPs should be marked,
and therefore could be treated specially.
More concretely, we propose two special marks: type=

defining A defining FMP is one that can always be used as a
definition of a symbol. An example of this is the
FMP for sin mentioned above. In all contexts, it is
legitimate to replace an occurrence of sin by the
corresponding right-hand side. Such FMPs will
generally begin with an eq operator, though this is
not necessarily required. The following guarantees
must be met by such an FMP.

A symbol can have at most one of them.
The replacement value must not, either directly
or indirectly by a chain of such FMPs, involve
the symbol being defined.

Davenport Defining Mathematical Properties



Kinds of FMP: 2008 Proposal (continued)

evaluating An evaluating FMP is one that can be used as a
definition of how to evaluate a symbol on a concrete
instance of its input argument(s). The following
guarantees must be met by such an FMP.

♠ A symbol can have at most one of them.
♠ The replacement value must, after a finite

number of applications of this, and any other
evaluating or defining FMPs, lead to an
expression free of the symbol being defined,
whenever the symbol is applied to concrete
instances of the correct type(s).

Davenport Defining Mathematical Properties



The requirements for uniqueness: 2008

These requirements could be seen as posing the following
questions.

1 Why restrict to one defining FMP?

2 Why restrict to one evaluating FMP?

3 Can one have one defining and one evaluating?

JHD: the first two avoid ambiguity — if I see two defining,
which do I use?
JHD: the third is not so obvious: one would apply ‘evaluating’
where one could, else ‘defining’

Davenport Defining Mathematical Properties



Varieties of Theory (Thanks, Lars)

There might be many competing view of what is “basic”
For functions we mght believe any of

C-Analysis sin in terns of exp

R-Analysis: 1 sin, cos primitive

R-Analysis: 2 sin(θ) in terms of tan(θ/2)

A single defining cannot capture this variety

Davenport Defining Mathematical Properties



2014 proposal

As well as type="defining" or type="evaluating", we allow
theories="theories", where theories is a list of theory identifiers.
The uniqueness requirements are then interpreted per theory

Davenport Defining Mathematical Properties



Lars’ further thoughts

“Also, if such names (I think the HTML class is of type NMTOKENS)
can be namespaced, then that would probably be a nice way of
associating the status of FMPs with theories. E.g. there could be

<FMP type="Euclid:definition Hilbert:axiom theorem">

to mean that “this FMP is known to be a definition in The
Elements, an axiom according to Hilbert, and a theorem in some
(unspecified) other theory”. And the point about namespaces is
that one would elsewhere have gone

<CD xmlns:Euclid="some-uri" xmlns:Hilbert="some-other-uri">

to provide a stable reference to “the theory”, whatever that may
be.I find the idea appealing that the URI for the Euclid theory
should be an URL for The Elements, but that’s probably a matter
for DML/MKM to hash out. :-)”

Davenport Defining Mathematical Properties



Implications

Changes to

standard section 4.2, 4.3. Probably also add a clarification on
the meaning of type= on the lines of this document

JHD believes that, since they are upwards-compatible,
these could be in “OM2 second edition”

CDs To make use of this, we need to add some type= to
existing CDs, and add more FMPs with this tag

version This would be a minor version number change

Compatibilty? In theory changing CD syntax is not upwards
compatble, but JHD knows of no CD-reading tools
except his students’ units ones Any others?

Do we need a registry of theories? Lars’ elsewhere

Or an index?

Davenport Defining Mathematical Properties


