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Complexity Theory is wonderful

Though we talk about complexity of problems, we should be more
precise and talk about the (problem, encoding) pair.

Definition (upper bound)

If ∃ algorithm A which solves all instances of problem P whose
E -encoding takes at most n bits, taking at most f (n) operations of
type T , then the T -complexity of (P,E ) is at most f (n).

A is a witness to this upper bound. f is often a O expression.

Definition (lower bound)

If we can prove that any such algorithm A (which solves all
instances of problem P whose E -encoding takes at most n bits)
must take at least g(n) operations of type T on one such instance
I (n), then the T -complexity of (P,E ) is at least g(n).

I (n) is the witness. g is often a Ω expression.
Implicitly, these are worst case bounds.
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Strong/Weak points of Complexity Theory: [AL17]

“Depending on context and tradition, a computational problem can
mean something practical that begs to be solved as efficiently as
possible, or a mathematical object in its own right, to be analysed,
classified, and understood. In the first sense, the aim is to develop
methods that work well on problems of interest, while in the
second, complexity-theoretic sense, algorithms are merely devices
used to show that a problem can be solved within certain resource
constraints, e.g., in a certain complexity class or with a running
time bounded by some function of the input size. Needless to say,
complexity-theoretic results are often only weakly correlated with
practical experience; a typical example is the simplex method1.
This is particularly true for numerical problems, where often a
condition number serves as a proxy to computational complexity”.
Another example is SAT-Solving: the quintessintial NP-Complete
problem [Coo66], yet since about 2000 every German car has been
manufactured with the aid of a SAT solver (say 100M such
solutions) [KS00].

1But see [Bix15, slide 31].
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Lower bounds

In general, non-trivial lower bounds are hard to achieve.

1 Reduction to a previous problem.

Notably the theory of NP-complete problems [Coo66]

2 The number of possibilities (sorting being Ω(n log2 n), for
example)

3 The size of the output (matrix multiplication being Ω(n2))

+ “CAD is doubly exponential [DH88, BD07]” is of this flavour.

The ingenuity consists in finding a bad family I (n).
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Beyond simple bit-length

We are already used in computer algebra (and elsewhere) at
looking at finer descriptions than the bit-length. Indeed we rarely
look at the raw bit length. We can have “dense univariate
polynomials of degree d and coefficients bounded by 2H”, where
the bitsize is (d + 1)(H + 1), but often the behaviour for d and H
is different.
If we move to (dense) polynomials in n variables, the bitsize is now
(d + 1)n(H + 1) (slightly different if d is total degree bound).
Kronecker-substitutions (replacing x2 by xd+1

1 etc.) can give a d/n
tradeoff. Sometimes a d/H tradeoff as well.
If we look at sparse polynomials with t terms, the bitsize is
log(d)t(H + 1) (or n log(d)t(H + 1) for multivariates).

� Note that dependence on n is now linear: of course t may be
exponential in n.
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Output-sensitive bounds

With sparse polynomials another problem arises: that of
connecting output size to input size. For sparse problems there is
often a bad worst-case connection, e.g. xn−1

x−1 = xn−1 + · · · + x + 1
with n terms.
The first breakthrough was [BOT88] in interpolation, which was
polynomial in T a bound for output number of terms (and
polynomial in log d).
Hence the solution is output-sensitive bounds, where we assume T
bounds the number of terms in the inputs and outputs. There has
been much good work in this area since our talk at my first
SYNASC [DC09].
Note that linear in T is as good as one can get, and in 2009 we
thought that polynomial in T would be a major improvement.
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Output-sensitive division

Theorem ([GGdCR22, Theorem 1.3])

There is a Monte Carlo randomized algorithm that, given two
sparse polynomials f , g ∈ Z[x1, . . . , xn] such that g divides f and a
bound T on the sparsity of the quotient f /g , computes the sparse
representation of f /g with probability at least 2/3. It requires
Õ((T + #f + #g)(n logD + logH)) bit operations where
D = deg(f ), and H is a bound on the height of the three
polynomials f , g and f /g .

Note that we have to supply T , but if we’re wrong, we double and
retry: doesn’t affect Õ.
Should output-sensitive bounds be used more widely than basic
sparse polynomial operations?
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Average-case

One obvious solution to the fact that “worst-case complexity” is
precisely that, is to look at “average-case complexity”. The
challenge then is to ask what metric we place on “average”. An
obvious answer would be “all bit patterns of length n have
probability 2−n”, but this ignores the tedious (but generally not
fundamental) issue that not all such bit patterns are valid for
encoding E .
More seriously, not all such bit patterns may represent
“interesting” objects. A classic case is (dense) polynomial
factorisation. Here it is the case that almost all polynomials do not
factor. In fact a stronger statement is true: almost all have Galois
group SN and so are easily proved irreducible [Mus75, LP97].
A more serious issue is that the representations may have essential
equivalences, e.g. f (x), f (−x), f (x + 1) . . . . We might wish to
consider the number field, rather than the actual polynomial, and
here the results are very different [Mal02]. So “which average”
matters.
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Weak Complexity [AL17]

“Average case complexity” can be ruined by an exponentially small
set of “bad cases” if they are exponentially worse than the typical
case.

Definition ([AL17, Definition 1.1.])

For k ∈ N let (Mk , µk) be a probability space and let
Tk : Mk → R be a µk -measurable function. We say that the family
{Tk} has a weak expectation of O(f (k)) if there exists a family of
sets of exceptional inputs, Ek ⊂ Mk , such that µk(Ek) = e−Ω(k)

and the conditional expectation, conditioned on the nonexceptional
inputs, E [Tk(x)|x /∈ Ek ] is bounded by f (k).

Perhaps we can also talk about “weak worst case” complexity as
well, where the true worst case is exponentially rare.
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Parameterized Complexity [DF99]

This came on the scene long after computer algebra developed its
own methodologies, and is rarely referred to. The idea is that,
rather than just looking at the bitsize, we look at more refined
parameters of the problem, which may or may not be evident.

evident We have already seen this with polynomials, where
we look at d and H rather than n.

retrospectively evident this includes the “output sensitive” sparse
polynomial algorithms, and there is probably more to
be done here.

not evident in the traditional theory, many graph algorithms are
exponential in the tree width, but polynomial in
everything else for a fixed tree width.

Gröbner Solving zero-dimensional systems, where the
complexity depends on the solving degree.

This appears towards the end of the solving
procedure, and its computation is believed to be
essentially equivalent to complete solving.

James Davenport masjhd@bath.ac.uk So the problem has poor complexity: what next? 10 / 25



Gröbner bases

Conjecture (Distinctly Optimistic)

The doubly-exponential behaviour of Gröbner bases [MR10] is
exponentially rare, i.e. the weak average complexity of Gröbner
bases is singly exponential in the number of variables.

Conjecture (Distinctly Optimistic)

The same is true for Comprehensive Gröbner systems.

Conjecture (Even More Optimistic)

Real Quantifier Elimination by Comprehensive Gröbner Systems
[Wei98] has weak average complexity singly exponential in the
number of variables (but doubly exponential in the number of
alternations).
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Empirical Complexity

Otherwise “How well does it do on interesting examples”: often
subtly “the examples which interest me”, from which it’s a small
step to “the examples which put my ideas in a good light”, often
unconsciously.
Here we should learn from the SAT and SMT communities: large
curated collections of “interesting” problems. This isn’t trivial.
[HHP+23] point out that the original MetiTarski dataset, often
used in the real geometry area, wasn’t symmetric in variables, to
the point where “choose x3” was a disproportionately effective
strategy. A different problem is that the MetiTarski dataset, even
before its augmentation to solve the bias issue, was far larger than
the other sources of examples in SMTLIB.
Nevertheless, we shouldn’t let these challenges get in the way of
doing much better than we currently do at Empirical Complexity.
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Empirical Complexity Done Well

This isn’t easy, but we have some useful examples in the SAT and
SMT communities. As said yesterday ([AZ23]), “benchmarking is
difficult”. We can state some key points (see also [Dav18]).

A large set of examples.

� Too many computer algebra papers have single-figure
numbers.

Proper de-biasing ([HHP+23]), where we can probably also
take lessons from “AI”, and balancing (this is a human
decision, based on “representativeness”).

Independently run (as in [AZ23]).

Verified answers (and a penalty for errors).

Ideally, a similar set of rules etc. from year to year.
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Doing well on subsets

This could be regarded as declaring whole subsets “interesting”, or
at least “useful” (German cars). Here are some examples from
quantifier elimination.

examples with few alternations. Platzer claims that ∀∃∀ is the
most complex structure of interest to him, but each quantifier
might have many variables.

linearity (or multilinearity). It has been observed that QE is
unreasonably (in terms of the number of variables) effective in
examples coming from economics. This seems to be due to
the fact that most of the expressions are multilinear.

� [BD07] shows that linear with many alternations can still be
doubly exponential.

Virtual Term Substitution can be a powerful tool with
variables occurring linearly. It makes a good pre-processor or
integrated option [Ton21, DTU23].
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looking inside O

Let a be the number of alternations, which we wish to treat as a
parameter in the sense of Parametric Complexity. Let n be the
number of actual variables (after unwinding any recycling).
Then both [DH88] n ≈ 5a and [BD07] n ≈ 3a give a as a lower
bound on the double exponent, whereas all cylindrical algebraic
decomposition methods have n + O(1) as the upper bound. Θ(n),
which we have, is pretty imprecise as a double exponent!
Either we need to find better lower bounds, or conclude that the
current cylindrical algebraic decomposition techniques need
substantial improvement.
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a = 0, assume ∃

Then we can write this in disjunctive normal form, and commute ∃
and

∨ ∨
i

∃xk+1 . . . xn
∧
j

Pi ,j(x1, . . . , xn)σi ,j0.

This may cause exponential blowup in the DNF conversion.
Certainly if k = 0 we can do better than cylindrical algebraic
decomposition on a single ∃xk+1 . . . xn

∧
j Pi ,j(x1, . . . , xn)σi ,j0.

However, if we pay the exponential blowup in the DNF conversion,
there is a lot of commonality in the
∃xk+1 . . . xn

∧
j Pi ,j(x1, . . . , xn)σi ,j0 terms, which a cylindrical

algebraic decomposition can exploit.
Complexity Theory isn’t easy!

James Davenport masjhd@bath.ac.uk So the problem has poor complexity: what next? 16 / 25



So what do to? (I)

Obviously I can’t tell you but you might wish to think about these.

1 Have I got the right encoding?

� “Sparse” is generally harder than “dense”, often done
probabilistically

2 If my problem is perverse examples with output blowup,
should I be looking for output-sensitive complexity?

� To do so, you must have a truly output-sensitive algorithm,
i.e. it must be fast when the input and output are small.

3 Perhaps I should have a different encoding for input and
output

� Tht might work, depending on the problem. “Low degree
factors of sparse polynomials” is a good case.

4 Should I be thinking of average case complexity?

� This is generally harder, unless you have some good
probability theory on your problem
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So what do to? (II)

5 Maybe I’ll just do empirical complexity.

!! Fine, but try to do it well: collecting good problem sets is
hard, and do try to archive them well (not just as PDF!).

?? and maybe you’ll discover other parameters, such as perfect
elimination orderings [CP16]
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