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(Caricature of) Attitudes

Guess which is which?

SC I want to win the next competition, which will have a
mixture of hard and easy problems, and be judged on
time-to-solve

SC I want to submit a paper with timings that make my
algorithm look good (on hard problems, ideally ones
other people can’t solve)
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Thesis

The SAT community, and hence the SMT community, have
substantial experience in benchmarking solvers against each other
on large sample sets, and publishing summaries, whereas the
computer algebra community tends to time solvers on a small set
of problems, and publishing individual times, with, at best,
selective comparison.
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Survivor plot
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Methodology

1 For each method separately
1 Solve each problem pi , noting the time ti (up to some

threshold T ).
2 Sort the ti into increasing order (discarding the time-out ones).
3 Plot the points (t1, 1), (t1 + t2, 2) etc., and in general

(
∑k

i=1 ti , k).

2 Place all the plots on the same axes, optionally (as we did)
using a logarithmic scale for time.

N.B. There is therefore no guarantee that the same problems were
used to produce time results from different solvers.
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Cactus Plots [BH15]
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Methodology

1 For each method separately
1 Solve each problem pi , noting the time ti (up to some

threshold T ).
2 Sort the ti into increasing order (discarding the time-out ones).
3 Plot the points (1, t1, ), (2, t1 + t2, 2) etc., and in general

(k ,
∑k

i=1 ti ).
Or Plot the points (1, t1), (2, t2) etc., and in general (k, tk).

2 Place all the plots on the same axes

* Again, logarithmic time is possible.

N.B. There is therefore no guarantee that the same problems were
used to produce time results from different solvers.
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Cumulative Density [XHHLB08]

Xu, Hutter, Hoos & Leyton-Brown
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Figure 4: Left: Average runtime, right: runtime cumulative distribution function (CDF) for dif-
ferent solvers on RANDOM; the average feature computation time was 2.3 CPU seconds
(too insignificant to be visible in SATzilla07’s runtime bar). All other solvers’ CDFs are
below the ones shown here (i.e., at each given runtime the maximum of the CDFs for the
selected solvers is an upper bound for the CDF of any of the solvers considered in our
experiments).
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Figure 5: Left: Average runtime, right: runtime CDF for different solvers on HANDMADE; the av-
erage feature computation time was 4.5 CPU seconds (shown as a white box on top of
SATzilla07’s runtime bar). All other solvers’ CDFs are below the ones shown here.

Overall, SATzilla07(S,Dr) achieved very good performance on data set RANDOM: It was
more than three times faster on average than its best component solver, March dl04 (see
Figure 4, left), and also dominated it in terms of fraction of instances solved, solving 20%
more instances within the cutoff time (see Figure 4, left). The runtime CDF plot also shows
that the local-search-based pre-solver SAPS helped considerably by solving more than 20%
of instances within 2 CPU seconds (this is reflected in the sharp increase in solved instances
just before feature computation begins).
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Example from ISSAC (Brown)
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Virtual Best Solver/“Oracle”

The SAT competition has taken to including a ”virtual best solver”
(VBS) which is synthesised from the other results by taking the
minimum (across all solvers tested) time taken to solve every given
benchmark. Thus the VBS time is always equal to the time of
some real solver, but which one will change by the benchmark
(measuring how often each solver is the VBS is also an interesting
metric). The VBS can be added to the survivor/cactus plot, or
indeed CDF, to get a feeling for the variability between solvers.
We often count how often a solver is the VBS. A variation on
counting is provided by [JLMS16], who measure how often a solver
is within one second of being VBS. Their justification is “The
constant of one second was chosen since we consider a smaller
difference as insignificant, especially in the context of 800 second
time-out”.
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Multiple Copies

One of the effects of having a solution process whose running time
is widely variable is that one may well not be best served by just
running the process to termination. In the case of a single
processor, this issue was considered by [LSZ93], who suggested
(and indeed proved almost-optimality) running the process up to
certain time limits and then starting afresh, where the limits were
of the form
T ,T , 2T ,T ,T , 2T , 4T ,T ,T , 2T ,T ,T , 2T , 4T , 8T , . . ., where T
is some arbitrary unit.
This is in fact the default behaviour in MiniSAT 2.2.0, where it is
known as Luby (though T is in fact measured in terms of conflicts
rather than time, and it’s not a complete restart that is performed,
as certain learned clauses are kept).
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Parallel running

These days, with processors getting more numerous rather than
faster, we might consider running multiple copies in parallel. To
see how this might help, consider the trivial case of a process
whose running time is 1,K ,K 2 with equal probability. Then the
average time to solution is 1

3(1 + K + K 2) = 37 when K = 10.
Running two copies and aborting the other when one finds the
solution has an average time to solution of 1

9(5 + 3K + K 2) = 15
when K = 10, so the CPU cost is 30 units, still less than the
sequential cost. Similarly, three copies gives 1

27(19 + 7K + K 2) = 7
when K = 10, so the CPU cost is 21 units, even better. For
K = 10, the minimum is achieved at 8-fold parallelism, with
time-to-solution 1.36 units, and a CPU cost of 10.9 units.
The break even point for two-fold parallel running is
K = 1

2

(
1 +
√

37
)
≈ 4.5, and three-fold running is K = 4. It is

worth noting, though, that a single Luby process with T = 1
3 (to

avoid T = 1 getting lucky) achieves an average time to solution
(and cost) of ≈ 9.
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Normal Distributions: plot
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Normal Distributions: log time plot
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Normal Distributions: compared

Note that we get very different conclusions from the two.
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Uniform in log(t)

Seems that running twice and running thrice were very similar, and
in fact that running twice was almost half the time of running
once, thus meaning that they were almost equivalent in cost.
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Uniform in log(t): Analysis

In fact, this model is susceptible to algebraic treatment, and the
formulae (running from 1 to B seconds, with numeric values for
B = 10) are as follows:

once = B−1
logB ≈ 3.9087

twice = 2
(logB)2

(B − (logB + 1)) ≈ 2.5264

thrice = 6
(logB)3

(
B − (12 logB + logB + 1)

)
≈ 1.9887

Hence in fact the “running thrice” number is approximately
correct, at one-half the elapsed time of running once.
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Notes

1 Brown was using (similar) random examples in each line

2 [BH15] had over 300 examples, and this is not uncommon:

* Indeed a talk today had > 5000 examples.

3 My slide had a misleading conclusion from only 20 samples.

4 Plotting time and log(time) gives very different graphs
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Questions?
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