
Computer Algebra and Formal Proof

James Davenport1

University of Bath
J.H.Davenport@bath.ac.uk

21 July 2017

1Thanks to EU H2020-FETOPEN-2016-2017-CSA project SC2 (712689)
and the Isaac Newton Institute through EPSRC K/032208/1

Davenport Computer Algebra and Formal Proof



Computer Algebra Systems

Large multi-author multi-decade systems

Often written in a kernel+library approach, superficially
similar to theorem-provers, but in practice the kernel isn’t
formally specified, and the libraries are where the semantics
live, and aren’t verified

The semantics are often variable, informal, and indeed
changing

e.g. “Now integrates more definite integrals in terms of Meijer
G -functions”

Intended for human consumption

Therefore can’t be imported into a theorem-prover as proven
lemmas.

Davenport Computer Algebra and Formal Proof



Does this mean the two fields can’t talk?

Not at all, and the fundamental reason is that it is generally easier
to verify a result than to derive it.
Excellent discussion in “A Sceptics Approach” [HT98].
However, the precise nature of the co-operation will depend
critically on the nature of the computation being considered: not
“one size fits all”.

Davenport Computer Algebra and Formal Proof



Greatest Common Divisors (of polynomials)

“g is the greatest common divisor of f1, f2 [and more]” is actually
two assertions:

1 g divides f1, f2 (implicitly over Z[x1, . . . , xn]);

2 Any h that also divides them divides g .

Note that g is not unique: −g would do as well. CA systems
enforce uniqueness by making the leading coefficient positive, but
this then depends on the definition of “leading”. If this matters,
there’s going to be a tricky communication over the meaning of
“leading”.

Davenport Computer Algebra and Formal Proof



Verifying Greatest Common Divisors

1a) Verify that g divides f1, f2. Or

1b) ask the system for h1 = f1/g etc. and verify that f1 = gh1 etc.

* The second is probably easier.

2a) The system will have computed p, v2, . . . , vn such that
hi (v2, . . . , vn) (mod p) are relatively prime and have the same
degree as the original hi .

TP Euclid in one variable (I probably wouldn’t bother with the
(mod p) part), and a one-off theorem

CA should provide a means of telling you p, v2, . . . , vn (they
currently don’t)

2b) “Ask for the Bézout coefficients” [HT98].

Davenport Computer Algebra and Formal Proof



“Ask for the Bézout coefficients”

Easy enough in one variable

Given f1, f2 ∈ Z[x ] ask CA for F1, F2 ∈ Q[x ] such that
F1f1 + F2f2 = g
This plus 1) shows g is a gcd (up to integer factors)

In n variables it’s harder: ∀i ∈ [1, . . . , n] needs

F
(i)
1 , F

(i)
2 ∈ Q(x1, . . . , xi−1, xi+1, . . . , xn)[xi ] such that

F
(i)
1 f1 + F

(i)
2 f2 = g

This plus 1) shows g is a gcd (up to integer factors)
If we didn’t care about contents, it’s easier.

Davenport Computer Algebra and Formal Proof



Factorisation (of polynomials)

“g factors as f1 · f2 · · · fm” is actually two assertions:

1 g = f1 · f2 · · · fm;

2 The fi are irreducible (implicitly over Z[x1, . . . , xn]).

Note that the fi are not unique: −fi would do as well. CA systems
enforce uniqueness by making the leading coefficient positive for
f2, . . . fm, and put all the content in f1, but this then depends on
the definition of “leading”. If this matters, there’s going to be a
tricky communication over the meaning of “leading”, and the order
of the fi .

Davenport Computer Algebra and Formal Proof



Verifying Factorisation

1a) Verify that g = f1 · f2 · · · fm;

2) Depending on f (and on the implementation)

2(i) The system will have computed p, v2, . . . , vn such that
fi (v2, . . . , vn) (mod p) are irreducible and have the same
degree as the original fi . Or

2(ii) The system will have computed pj , v2, . . . , vn such that the
factorisations of fi (v2, . . . , vn) (mod pj) are incompatible with
fi being reducible (and they have the same degree as the
original fi ). Or

2(iii) it’s worse than that.

CA should provide a means of telling you which, and p, v2, . . . , vn
(they currently don’t)

TP Cantor–Zassenhaus [CZ81] in Zp[x ], and a one-off theorem for
2(i), or some messy combinatorics for 2(ii).

Davenport Computer Algebra and Formal Proof



2(iii): it’s worse than that

The classic example is x4 + 1, which is irreducible, but factors
modulo every prime into two quadratics (which may be reducible).

The usual approach in computer algebra is to factor modulo
p, lift the factors to a factorisation modulo pn by Hensel’s
Lemma, and then deduce that this is incompatible with the
Landau–Mignotte bounds [Mig74] on factors of g .

An alternative approach would be to ask the CA system for a
largish p such that the factors modulo p were already
incompatible with the Landau–Mignotte bounds.

You might need large prime Berlekamp for the second, rather
than Cantor–Zassenhaus if the prime really is large.

Whichever way one goes, one needs enough (complex) analysis to
prove the Landau–Mignotte bounds.

Davenport Computer Algebra and Formal Proof



Indefinite Integration

When one types
∫
f dx into an algebra system, one gets three

kinds of result:

1 Some formula F ;

2 The same integral echoed back;

3 A hybrid F +
∫
gdx .

It is expected that F ′ = f in the first case (or F ′ + g = f in the
third).
Verifying a type 1 result is in principle easy: one differentiates F
and checks that it is equal to f . The problems are:

F may contain constructs the prover doesn’t know, and the
prover may be unable to prove equality.

Even if not, the mathematical equality may be difficult (see
[HT98])

Davenport Computer Algebra and Formal Proof



Indefinite Integration

The meaning of type 2/3 results is less clear. For certain classes C
of functions, there are theorems (e.g. [Ris69] for the elementary
transcendental functions) that allow one to assert
6 ∃F ∈ C : F ′ = f , i.e. “f in unintegrable (in C). However:

Such theorems are relatively complicated (though purely
algebraic) and I know of no attempts to formalise them;

The implementations of these in algebra systems tend to be
incomplete;

The classes C for which such theorems exist are much smaller
than the classes in which algebra systems actually return type
1 results anyway.

Also I know of no use for such a negative result.

Davenport Computer Algebra and Formal Proof



Definite Integration

Assuming one has a type 1 result from indefinite integration,

definite integration should be simple:
∫ b
a f dx =

[
F
]x=b

x=a
.

Theorem (Fundamental Theorem of Calculus [Apo67, §5.3])

Let f and F be functions defined on a closed interval [a, b] such
that F ′ = f throughout [a, b]. If f is Riemann-integrable on [a, b],
then ∫ b

a
f (x)dx = F (b)− F (a).

Davenport Computer Algebra and Formal Proof



Definite Integration

The integral of a positive function over a positive range cannot be

negative. But
∫

1
x2
dx = −1

x , therefore
∫ 1
−1

1
x2
dx =

[−1
x

]1
−1 = −2∫

1
2x2−6x+5

dx = arctan
(
x−2
x−1

)
, therefore∫ 2

0
1

2x2−6x+5
dx =

[
arctan

(
x−2
x−1

)]2
0

= 0− arctan 2 ≈= −1.1

Davenport Computer Algebra and Formal Proof



(Polynomial) Equation Solving (C)

To solve fi = 0: fi ∈ k[x1, . . . , xn].
The general technique is to compute a Gröbner basis, which can be
computed in TP [The98, The01, CP99], but we’d probably rather
not.

CA G := {gi} is a Gröbner base for the {fi}.
TP1 Verify the {gi} are a Gröbner base:

∀i : gi →G\{gi}∗ 0,

TP2 Verify ∀i : fi →G∗ 0, i.e. ({fi}) ⊆ ({gi}).

TP3 Verify ({gi}) ⊆ ({fi}).

i.e. “Ask for the Bézout coefficients”: each gi =
∑

hi ,j fj ,
so ask for, and verify this.

But1 I know of no CAS that routinely produces then,

But2 The obvious algorithm: tdeg GB followed by FGLM
to plex, doesn’t produce them

But3 They may be very large.

Davenport Computer Algebra and Formal Proof



(Polynomial) Equation Solving (R)

Once one allows R, one has to allow 6=, ≤ etc.
The algorithmic method of choice has been the cylindrical
algebraic decomposition (CAD) of Rn into connected regions Ci in
each of which every polynomial is sign invariant, and arranged
cylindrically: ∀i , j , k : πk(Ci ) and πk(Cj) are equal or disjoint,
where πk is the projection onto the first k coordinates. Then the
problem is reduced to inspecting one sample point per region.
This also allows quantifier elimination (because of cylindricity).
The initial algorithm [Col75] has had many improvements, but not
exactly simplifications: more topology gets imported.
Probably needs animplementation within [TP] [Mah07]

Davenport Computer Algebra and Formal Proof



(Polynomial) Equation Solving (R: II)

Two alternative methods for computing CAD.

Regular Chains [CM16]
1 [CA]Decompose Cn cylindrically by regular chains
2 [TP]Verify this (how?)
3 [TP?]MakeSemiAlgebraic

Comprehensive Gröbner Bases [Wei92]
1 [CA]Build a CGB
2 [TP]Verify this [KY15]
3 [TP?]Use this to build CAD [FIS15]

Or Just produce a single cell of the CAD [Bro15]

Inspired by [JdM13]

Davenport Computer Algebra and Formal Proof



Questions?

Davenport Computer Algebra and Formal Proof



Bibliography
I

T.M. Apostol.
Calculus, Volume I, 2nd edition.
Blaisdell, 1967.

C.W. Brown.
Open Non-uniform Cylindrical Algebraic Decompositions.
In Proceedings ISSAC 2015, pages 85–92, 2015.

C. Chen and M. Moreno Maza.
Quantifier elimination by cylindrical algebraic decomposition
based on regular chains.
J. Symbolic Comp., 75:74–93, 2016.

Davenport Computer Algebra and Formal Proof



Bibliography
II

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

T. Coquand and H. Persson.
Gröbner bases in type theory.
International Workshop on Types for Proofs and Programs,
pages 33–46, 1999.

D.G. Cantor and H. Zassenhaus.
A New Algorithm for Factoring Polynomials over Finite Fields.
Math. Comp., 36:587–592, 1981.

Davenport Computer Algebra and Formal Proof



Bibliography
III

R. Fukasaku, H. Iwane, and Y. Sato.
Real Quantifier Elimination by Computation of Comprehensive
Gröbner Systems.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
173–180, 2015.

J. Harrison and L. Théry.
A sceptic’s approach to combining HOL and Maple.
J. Automat. Reason., 21:279–294, 1998.

D. Jovanović and L. de Moura.
Solving non-linear arithmetic.
ACM Communications in Computer Algebra,
46(3/4):104–105, 2013.

Davenport Computer Algebra and Formal Proof



Bibliography
IV

D. Kapur and Y. Yang.
An Algorithm to Check Whether a Basis of a Parametric
Polynomial System is a Comprehensive Gröbner Basis and the
Associated Completion Algorithm.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
243–250, 2015.

A. Mahboubi.
Implementing the cylindrical algebraic decomposition within
the Coq system.
Math. Struct. in Comp. Science, 17:99–127, 2007.

M. Mignotte.
An Inequality about Factors of Polynomials.
Math. Comp., 28:1153–1157, 1974.

Davenport Computer Algebra and Formal Proof



Bibliography
V

R.H. Risch.
The Problem of Integration in Finite Terms.
Trans. A.M.S., 139:167–189, 1969.

L. Théry.
A Certified Version of Buchberger’s algorithm.
In Automated Deduction — CADE-15, pages 349–364, 1998.

L. Théry.
A machine-checked implementation of Buchberger’s algorithm.

J. Automat. Reason., 26:107–137, 2001.

V. Weispfenning.
Comprehensive Gröbner Bases.
J. Symbolic Comp., 14:1–29, 1992.

Davenport Computer Algebra and Formal Proof


