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Quantifier Elimination

Throughout, Q; € {3,V}. Given

D = Qua1Xk+1 - - - Qnxnd(X1, ..., Xn),

where ¢ is in some (quantifier-free, generally Boolean-valued)
language L, produce an equivalent

Vi=(x1,...,xk) " e L

In particular, k = 0 is a decision problem: is ® true?



Quantifier Elimination is difficult

Vn:n>1=3p13pa(pr € PAp2 € PA2n=p1+ p2)
[meP=Vp¥g(m=pg=p=1Vq=1)

is a statement of Goldbach’s conjecture with, naively, seven
quantifiers (five will do)

In fact, quantifier elimination is impossible over N. [Mat70]
However, it is possible for semi-algebraic (polynomials and
inequalities) L over R [Tar51]

Unfortunately, the complexity of Tarski's method is indescribable



Collins" method [Col75]

1 Let S, be the polynomials in ¢ (m polynomials, degree d, n
variables)

2 Compute S,_1 (©(m?) polys, degree ©(d?), n — 1 variables)
3 and S,_2 (©((m?)?) polys, degree ©((d?)?), n — 2 variables)
© continue
n and S; (©(m*"™") polys, degree ©(d?" "), 1 variable)

n+ 1 lsolate roots of 51

n+ 2 Over each root, or interval between roots, isolate roots of Sy

: continue
2n S, has invariant signs on each region of R”, so ¢(x1,...,xn)
has invariant truth on each region
2n+1 So evaluate truth of ® on each region of (xi, ..., xx)-space

Clearly complexity (md)zo("): in fact O ((2m)22"+8d2"+6> [Col75]



Collins’ method continued

Well, at least that's describable, even if worrying
A better analysis of step n+ 1 [Dav85] gives O <(2k)22n+§(6d2"+¢4)

which doesn’t look very impressive until you realise it's Z4 — Z
In fact, it largely affects the analysis, not the actual running time

[DH88] showed QE is Q (22 "2 /6> or (harder) Q (22 n=2) /5)

(at least in the dense model, i.e. storing all d + 1 coefficients of a
polynomial of degree d).

So we're in (226(")>—|and:

this is not the same as © (22")—Iand, of course



More lower bounds [BDO07]

The key idea [Hei83]: suppose ®, is y, = fn(xn). Then

¢n+1(Xn+17Yn+1) = 3z,Yx,Vyn
[(yn = Ynt1 AN Xn = Zn+1) \ (yn = Zpt1 N Xp = Xn-i-l)] = q>n(men)

iS Yn+1 = fa(fa(xnt1))- Apply this to

() 2x x<1/2
X =
M2 x> 1)2

Then ®,(xp, 3) defines a set with 22" isolated points.
[BDO7] shows this set needs doubly exponential space to encode,
in dense, sparse or factored form.



Changing the Question

The Heintz construction of [BD07] is 3VV, --- 3VV , with two
~ =~

» block  block
alternations of quantifiers for every three quantifiers

Let a be the number of alternations

Then [FGMO90] the (sequential) cost is (md)”o(a)

The doubly-exponential nature is really only for the number of
alternations, and it's singly-exponential for the number of variables

é% | know of no implementation of this method
u

It means that cylindrical algebraic decomposition is not always
(asymptotically!) best



Order is (sometimes) everything

Consider the polynomial [BD07, Theorem 7]

<(Yn—1 - %)2 + (Xn—l - Zn)2> ((Yn—l - Zn)2 + (Xn—l - Xn)z) X"

D (ic1 = yi)? + (i1 — 20)%) (i1 — 2)* + (o1 — %)) X7
i=1

(00 =200 + (074 (0~ 1)

(0= 2+2) + (a2~ (= 1)) x+

Eliminating a, Xn, Zn, Xn—1, Yn—1, Zn—1 - - - y Z1, X0, ', Y0, X Eives a
CAD (in fact a polynomial in a) with at least 22" cells, whereas the

opposite order has three cells.
Conversely [BDO07, Theorem 8] there are problems that are doubly

exponential for all orders.



If we can choose the order, how?

Various heuristics:

sotd For all n! orders, perform steps 1-n, measure sotd
(sum of total degrees) and do n+1,... for the least

Greedy sotd [DSS04] Do step 1 for each variable, choose the best
(sotd) and repeat: often ties

ndrr [BDEW13] For all n! orders, perform steps 1-n, count
number of distinct real roots

we tend to use greedy sotd with ndrr as a tiebreaker

Brown [Bro04, 5.2] Eliminate lowest degree variable first
(with tie-breaking rules): quite effective

Machine Learning metaheuristic: very preliminary results from
Zongyan Huang (Cambridge) are encouraging



Ordering Example [DSS04]

Lazard's quartic: Vx : px> +gx+r+x*>0
6 possible orders for (p, g, r)

order

SOl WN

sotd
54
54
50
50
66
66

Fcells
445

445
417
417

CAD
4.71
83.39
0.54
1.64
>600
>600

#true
251

251
235
239

QE
7.04
138.18
0.89
2.55
>600
>600



Equational Constraints [McC99]

If pisf =0A qg we need only consider the cells when f =0 is
true. This means the first projection step produces O(m)
polynomials rather than O(m?), and the complexity is

0 <(2m)22n+§(6d2"+6).

This gives an interesting formulation problem: given
(A=0Ag<0)V(=0Ag <0) (1)
we are better off solving the equivalent

hh =0A[(A=0Ag1 <0)V(Lh=0Ag <0)] (2)

even though the degree goes up: O <(2m)22n+§/6d2"+¢>

[There is a technical side-condition well-orientedness]



Truth-Table invariant CAD [BDE"13]

In
(Ah=0ANg1 <0)V(h=0Ag <0) (3)

the first projection set need only be Disc(f1), Disc(f2), Res(f1, f2),
Res(f1, g1), Res(f2, g2) (and omits Disc(g1), Disc(g2), Res(g1,&2),
Res(f1, g2), Res(f1,g2)). Essentially all the advantages of
equational constraints.

There is still the technical side-condition well-orientedness,
removed (with many other improvements) in [BCD"14]

There are still issues of formulation: e.g. in

(Ah=0AfHL=0Ag; <0)V..., which equation do we prefer?



Choice of Equational Constraint [BDEW13]

EC Choice 1 EC Choice 2 EC Choice 3

Cells  Time S N | Cells Time S N | Cells Time S N
657 5.6 61 7 | 463 5.1 64 8 | 269 1.3 42 4
711 6.3 66 6 | 471 5.4 71 6 | 303 1.1 40 5
375 2.7 81 9 | 435 3.6 73 8 | 425 2.8 80 8
1205 214 140 13 | 477 3.8 84 9 | 1437 239 158 4
285 2.0 61 7| 169 1.0 59 5

39 0.1 54 51 9 0.0 47 1

F - 14 0| F - 14 0| 27 0.1 14 0
57 0.3 32 3| 117 0.7 35 3] 119 0.6 36 4

Table: Comparing the choice of equational constraint for a selection of
problems. The lowest cell count for each problem is highlighted and the
minimal values of the heuristics emboldened.




Which constraint?

We assume x < y and consider {¢1, $2}:

fi=x+y =1, h=y'—%  gi=xy—g
fri=(x—4P2+(y-17-1 g=(x-4(-1) -1
p1:=h=0NHA=0Ag <0, pp:=H=0Ag <O0. (1)



RC-TTICAD with f; — h — £ (57 cells).
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RC-TTICAD with h — f; — f, (75 cells). This is the
default and the same as with £, h, f;.
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RC-TTICAD with £, — i — h (77 cells).
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PL-TTICAD with f; identified (117 cells).
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RC-TTICAD with h identified (163 cells).
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Grobner Reduction as well [BDEW13]

Order| Full CAD TTI CAD TTI+Gré CAD
Cells Time ||Eq Const|Cells Time| S N ||Eq Const|Cells Time| S N
y < x| 725 22.802|| fi.1, fa1 | 153 0.818] 62 12|| fi1, fau| 27 0.095| 37 3
fia, fae | 111 0.752| 94 10|| fi1, fa2 | 47 0.361|50 5
T2, f20 | 121 0.732| 85 9| fi1, f23 | 93 0.257|50 9
fio, faz| 75 0.840| 99 7| fio, for | 47 0.151|47 5
fio foz| 83 0329|163 7
fio, fos | 145 0.768 |81 11
fis, fan | 95 0.263]46 10
fis, for | 151 0.712|80 12
fi.3, fos | 209 0.980| 62 16
x < y| 657 22.029 fi1, fan1 | 125 0.676] 65 14| fi1, fon| 29 0.085 39 4
fia, fae | 117 0.792| 96 11|| fi1, foo | 53 0.144|52 6
fi,2, fou | 117 0.728| 88 11| fi1, fa,3 | 97 0.307|53 97
fi2, f22| 85 0.650| 101 8| fi2, /21| 53 0.146[49 6
fio, fan| 93 0.332]65 8
fi, fos | 149 0.782] 81 13
fis, foa | 97 0.24848 11
frs, fon | 149 079882 13
fis, fos | 165 1.061 |65 18

m 11 e

T T e T

m™ 1

11




Robot Motion Planning

Reduces to CAD [SS83]. But can we move ladder 1 to position 27

Insoluble in 1986 [Dav86], insoluble today by [SS83, and today’s
hardware and CAD advances]



A different formulation [WBDE13]

C
Figure: Four canonical invalid positions of the ladder. Note from the
algebraic descriptions that for positions A—C only one end need be
outside the corridor.

lengthA=(AV BV CV D): Soluble (5 hours CPU, 285419 cells)



The solution:

Xx<OAy>0Aw<0Az>0A(y -2+ (x—w)’>=9
Ahx+1ZOAw+1zohqy—1§OAw+1zo
/\y2W2—2yW2+X2W2+2XW2+2W2—2xy2W
+ dxyw — 2x3w — 4x°w — dxw + x°y? — 2x%y
+x*+2x3 —7x* - 18x — 9 > 0]
\/[X—I—l20/\yw—w—|—y—|—x20/\w2—2XW—|—y2
—2y+x*—8>0Az—1<0]
\/[X—I—l2O/\yW—W—l—y—i—xZO/\y2W2—2yW2
—|—X2W2—|—2XW2—|—2W2—2xy2w—|—4xyw—2x3w
—4x%°w — Axw + x%y? — 2x%y 4+ x* 4+ 2x3 — 7x?
—18x—-9<0Az—-1<0(]

Vly-1<0Az-1<0]|. 4)



N

R




Conclusions

The

more | learn, the less | know, but
There's more than one way to state a problem

Clearly equivalent in terms of decidability, but not practical
computability

The differences are vast in practice
We have some reasonable heuristics

But much more work needs to be done, theoretically,
experimentally, and on the “software packaging” side

We need practical work on alternative methods for quantifier
elimination
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