
Programming semantics in the presence of
complex numbers, logarithms etc.

James Davenport
University of Bath

J.H.Davenport@bath.ac.uk

23 May 2012

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Conventional Wisdom

Programming errors in numerical programs come in three distinct
flavours

blunder This is the sort of error traditionally addressed in
“program verification”: are all array elements
properly initialised before use, are array bounds
always respected etc.

parallelism Issues of deadlocks or races occurring due to the
parallelism of an otherwise correct sequential
program.

numerical Do truncation and round-off errors, individually or
combined, mean that the program computes
approximations to the “true” answers which are out
of tolerance. This is the area traditionally addressed
in Numerical Analysis.

We note that [Cou05] contains 30 papers, of which only [Mar05]
deals with strictly numerical issues, four with parallelism issues,
and the rest (83%) with the first kind.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Numerical Analysis

Itself a very large and complicated subject
There are really two subquestions here:

the rounding question, i.e. does RIEEE approximate R
sufficiently well,

and the truncation error question, i.e. is h small enough that
it is the mathematical ε.

Unfortunately the two interact!

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Our thesis

There is a fourth category

manipulation A piece of algebra, which is “obviously correct”,
turns out not to be.

Note: throughout this paper we take the standard definitions of
the branch cuts of the elementary functions from [AS64, Nat10, as
tightened in [CDJW00]]. Other definitions would have different,
but not fewer, problems.
Initial capitals, such as Log z denote the multivalued functions, i.e.

Log z = {log z + 2niπ|n ∈ Z}

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



An example: log

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Generalities

The problems we are going to describe arise largely from complex
numbers, and it is sometimes said “real programs don’t use
complex numbers”.

Many people, such as [Ter12, (5.2.5)], have been misled by

Arctan(x) + Arctan(y) = Arctan

(
x + y

1− xy

)
[AS64, (4.4.34)]

into writing

arctan(x) + arctan(y) = arctan

(
x + y

1− xy

)
,

which is not universally valid (consider x = y = 2).

Many problems arise in fluid dynamics, where two-dimensional
real space R2 = {(x , y)} is viewed as the complex plane
C = {z = x + iy}, then mapped analytically

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



a simple case

Before looking at genuine problems, consider a simple example

true
√

1− z
√

1 + z =
√

1− z2 (A)

and the r.h.s. is half the cost

(and vectorises better)

false
√

z − 1
√

z + 1
?
=
√

z2 − 1 (B)

consider z = −2:
√
−3
√
−1

?
=
√

3

The difference is that the branch cuts in (B) divide the complex
plane, essentially into a region of truth and a region of “well, it’s
true if the r.h.s. is the other square root”

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



√
z − 1

√
z + 1

?
=
√
z2 − 1

The main region is “clearly” disconnected, so there might be
generic areas of falsity, as well as problems on the branch cuts

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



√
1− z

√
1 + z

?
=
√

1− z2

The main region is “clearly” connected, so if there are problems,
they are only on the cuts

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Kahan’s example: [Kah87, pp. 187–189]

w = g(z) := 2 arccosh

(
1 +

2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
(1)

is only the same as the ostensibly more efficient

w
?
=q(z) := 2 arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
, (2)

if we avoid the negative real axis and the area{
z = x + iy : |y | ≤

√
(x + 3)2(−2x − 9)

2x + 5
∧−9/2 ≤ x ≤ −3

}
(3)

Modern computer algebra systems will refuse to convert one into
the other, but this does not constitute a proof of difference.

Challenge

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



There is a solution, but

The first truly algorithmic approach is ten years old ([BCD+02],
refined in [BBDP07]), and has various difficulties.

We use Cylindrical Algebraic Decomposition of RN to find the
connected components of CN/2 \ {branch cuts}.
The complexity of this is doubly exponential in N: ≤ dO(2N )

[Hon91] and ≥ 22(N−1)/3
[BD07, DH88].

Better algorithms are in principle known ([BRSEDS12] is

dO(N
√

N)), we do not know of any accessible implementations.

We are clearly limited to small values of N, at which point
O(. . .) is of limited use. The cross-over point between
2(N−1)/3 and N

√
N is at N = 21

A more detailed comparison is given in [Hon91].

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



but (2)

While the fundamental branch cut of log is simple enough,
being {z = x + iy |y = 0 ∧ x < 0}, actual branch cuts are
messier

Part of the branch cut of (2) is

2x3 +21x2 +72x +2xy 2 +5y 2 +81 = 0∧other conditions, (4)

whose solution accounts for the curious expression in (3).

While there has been some progress in manipulating such
images of half-lines (described in [PBD10, Phi11]), there is
almost certainly more to be done

Note This would also be of interest for motion-planning

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Injectivity

Consider the Joukowski map [Hen74, pp. 294–298]:

f : z 7→ 1

2

(
z +

1

z

)
. (5)

Lemma

f is injective as a function from D = {z : |z | > 1},

“Proof”: If z 7→ ζ then 1/z 7→ ζ, and there are no other
pre-images of ζ. If |z | > 1, then |1/z | < 1, so z is unique in D.
In fact f is a bijection from D to C \ [−1, 1], and hence has an
inverse.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



More formally

(5) is the conformal map C→ C that equates to the map

fR : (x , y) 7→
(

1

2
x +

1

2

x

x2 + y 2
,

1

2
y − 1

2

y

x2 + y 2

)
(6)

R2 → R2. However, it is not obvious from (6) alone that fR is a
bijection, i.e. that

∀x1x2y1y2

(
x2

1 + y 2
1 > 1 ∧ x2

2 + y 2
2 > 1 ∧ x1 + x1

x2
1 +y2

1
= x2 + x2

x2
2 +y2

2
∧

y1 − y1

x2
1 +y2

1
= y2 − y2

x2
2 +y2

2

)
⇒
(
x1 = x2 ∧ y1 = y2

)
.

(7)

Challenge

Demonstrate automatically the truth of (7).

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Towards this challenge

We have been unable to do this with either the QEPCAD [Bro03]
of Partial Cylindrical Algebraic Decomposition [CH91] or the Maple
implementation of Cylindrical Algebraic Decomposition via
triangular decomposition [CMMXY09].
However, Brown [Bro12] has been able to reformulate the problem
to make it amenable to QEPCAD, and indeed solved it in under 12
seconds.

Challenge

Automate these techniques and transforms.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Why so difficult?

The lemma seems to be about complex functions of one variable,
so why do we need to handle (or fail to handle) statements about
four real variables to prove them?

1) The statements require the | · | function which is not complex
analytic. Hence some recourse to real analysis (and therefore
twice as many variables) seems inevitable, though it would be
nice to have a more formal statement and proof of this.

2) Equation (7) is the direct translation of the basic definition of
injectivity. In practice, certainly if we were looking at
functions R→ R, we would want to use the fact that the
function concerned was continuous.

Challenge

Find a better formulation of injectivity questions RN → RN ,
making use of the properties of the functions concerned (certainly
continuity, possibly rationality).

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Why so difficult (2)?

3) While (7) is from the existential theory of the reals, and so
the theoretically more efficient algorithms quoted in [Hon91]
are in principle applicable, the more modern developments
described in [PJ09] do not seem to be directly applicable.
However, we can transform then into a disjunction of
statements to each of which the Weak Positivstellensatz
[PJ09, Theorem 1] is applicable.

Challenge

Solve these problems using the techniques of [PJ09],

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



A bijection has an inverse, right!

So what is it?
Formally: if ζ = 1

2

(
z + 1

z

)
, then 2zζ = z2 + 1 and

z = ζ ±
√
ζ2 − 1, and the only challenge is: which ± to choose?

The answer is “neither”, or at least “neither, uniformly”.
For f a bijection from {z : |z | > 1} to C \ [−1, 1], its inverse is

f1(ζ) = ζ


+
√
ζ2 − 1 =(ζ) > 0

−
√
ζ2 − 1 =ζ) < 0

+
√
ζ2 − 1 =(ζ) = 0 ∧ <(ζ) > 1

−
√
ζ2 − 1 =(ζ) = 0 ∧ <(ζ) < −1

(8)

In fact, a better (at least, free of case distinctions) definition is

f2(ζ) = ζ +
√
ζ − 1

√
ζ + 1. (9)

The techniques of [BBDP07] are able to verify (9)

Challenge

Derive automatically, and prove, either (8) or (9).

In terms of derivation, the techniques of [CJ96] seem worthy of
investigation, but the author has been unable to do this derivation
satisfactorily by this route.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Worse

Lemma

f is injective as a function from H = {z : =z > 0}.

“proof”is the same, and we don’t have a formal proof, which needs
R4 (= is not complex analytic).
[Hen74, (5.1-13), p. 298] argues for the inverse

f2(ζ) = ζ +
√
ζ − 1︸ ︷︷ ︸

arg∈(−π/2,π/2]

√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]

. (10)

Challenge

Find a way to represent functions such as
√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Worse (2)

Fortunately such bizarre functions are expressible in this case, we
can write

√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]

= i
√
−ζ − 1︸ ︷︷ ︸

arg∈(−π/2,π/2]

, and the latter is the normal

sqrt function of [AS64]. Hence we have an inverse function

f3(ζ) = ζ +
√
ζ − 1i

√
−ζ − 1. (11)

Challenge

Demonstrate automatically that this is an inverse to f on
{z : =z > 0}.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



A Higher-level challenge

Most of what we have been talking about is represented in
“normal” texts such as [Hen74], and a programmer implementing
this would write comments (we hope!).
How to turn these into any sort of machine-readable specification?
This may be related to the more general question of capture of
side-conditions, see Ariane-V.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



Bibliography

For the full bibliography, see http:
//staff.bath.ac.uk/masjhd/Slides/JHD-Wessex-bib.pdf.

M. Abramowitz and I. Stegun.

Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.

US Government Printing Office, 1964.

J.C. Beaumont, R.J. Bradford, J.H. Davenport, and N. Phisanbut.

Testing Elementary Function Identities Using CAD.

AAECC, 18:513–543, 2007.

R.J. Bradford, R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt.

Reasoning about the Elementary Functions of Complex Analysis.

Annals of Mathematics and Artificial Intelligence, 36:303–318, 2002.

C.W. Brown and J.H. Davenport.

The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition.

In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60, 2007.

C.W. Brown.

QEPCAD B: a program for computing with semi-algebraic sets using CADs.

ACM SIGSAM Bulletin 4, 37:97–108, 2003.

C.W. Brown.

Re: Query about QEPCAD.

Personal Commnication to David Wilson, 2012.

S. Basu, M.-F. Roy, M. Safey El Din, and É. Schost.

A baby step-giant step roadmap algorithm for general algebraic sets.

http://arxiv.org/abs/1201.6439, 2012.

R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt.

According to Abramowitz and Stegun.

SIGSAM Bulletin 2, 34:58–65, 2000.

G.E. Collins and H. Hong.

Partial Cylindrical Algebraic Decomposition for Quantifier Elimination.

J. Symbolic Comp., 12:299–328, 1991.

R.M. Corless and D.J. Jeffrey.

The Unwinding Number.

SIGSAM Bulletin 2, 30:28–35, 1996.

C. Chen, M. Moreno Maza, B. Xia, and L. Yang.

Computing Cylindrical Algebraic Decomposition via Triangular Decomposition.

In J. May, editor, Proceedings ISSAC 2009, pages 95–102, 2009.

R. (Ed.) Cousot.

Verification, Model Checking, and Abstract Interpretation.

Springer Lecture Notes in Computer Science 3385, 2005.

J.H. Davenport and J. Heintz.

Real Quantifier Elimination is Doubly Exponential.

J. Symbolic Comp., 5:29–35, 1988.

P. Henrici.

Applied and Computational Complex Analysis I.

Wiley, 1974.

H. Hong.

Comparison of several decision algorithms for the existential theory of the reals.

Technical Report 91-41, 1991.

W. Kahan.

Branch Cuts for Complex Elementary Functions.

In A. Iserles and M.J.D. Powell, editors, Proceedings The State of Art in Numerical Analysis, pages
165–211, 1987.

M. Martel.

An Overview of Semantics for the Validation of Numerical Programs.

In Proceedings Verification, pages 59–77, 2005.

National Institute for Standards and Technology.

The NIST Digital Library of Mathematical Functions.

http://dlmf.nist.gov, 2010.

N. Phisanbut, R.J. Bradford, and J.H. Davenport.

Geometry of Branch Cuts.

Communications in Computer Algebra, 44:132–135, 2010.

N. Phisanbut.

Practical Simplification of Elementary Functions using Cylindrical Algebraic Decomposition.

PhD thesis, University of Bath, 2011.

G.O. Passmore and P.B. Jackson.

Combined Decision Techniques for the Existential Theory of the Reals.

In J. Carette et al., editor, Proceedings Intelligent Computer Mathematics, pages 122–137, 2009.

D. Terr.

Math is Amazingly Powerful.

http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/

sum-and-difference-formulas.html, 2012.

Davenport Programming semantics in the presence of complex numbers, logarithms etc.

http://staff.bath.ac.uk/masjhd/Slides/JHD-Wessex-bib.pdf
http://staff.bath.ac.uk/masjhd/Slides/JHD-Wessex-bib.pdf
http://arxiv.org/abs/1201.6439
http://dlmf.nist.gov
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html

