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Conventional Wisdom

Programming errors in numerical programs come in three distinct
flavours

blunder This is the sort of error traditionally addressed in
“program verification”: are all array elements
properly initialised before use, are array bounds
always respected etc.

parallelism Issues of deadlocks or races occurring due to the
parallelism of an otherwise correct sequential
program.

numerical Do truncation and round-off errors, individually or
combined, mean that the program computes
approximations to the “true” answers which are out
of tolerance. This is the area traditionally addressed
in Numerical Analysis.

We note that [Cou05] contains 30 papers, of which only [Mar05]
deals with strictly numerical issues, four with parallelism issues,
and the rest (83%) with the first kind.
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Numerical Analysis

Itself a very large and complicated subject
There are really two subquestions here:

the rounding question, i.e. does RIEEE approximate R
sufficiently well,

and the truncation error question, i.e. is h small enough that
it is the mathematical ε.

Unfortunately the two interact!
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Our thesis

There is a fourth category

manipulation A piece of algebra, which is “obviously correct”,
turns out not to be.

Note: throughout this paper we take the standard definitions of
the branch cuts of the elementary functions from [AS64, Nat10, as
tightened in [CDJW00]]. Other definitions would have different,
but not fewer, problems.
Initial capitals, such as Log z denote the multivalued functions, i.e.

Log z = {log z + 2niπ|n ∈ Z}
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An example: log
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Generalities

The problems we are going to describe arise largely from complex
numbers, and it is sometimes said “real programs don’t use
complex numbers”.

Many people, such as [Ter12, (5.2.5)], have been misled by

Arctan(x) + Arctan(y) = Arctan

(
x + y

1− xy

)
[AS64, (4.4.34)]

into writing

arctan(x) + arctan(y) = arctan

(
x + y

1− xy

)
,

which is not universally valid (consider x = y = 2).

Many problems arise in fluid dynamics, where two-dimensional
real space R2 = {(x , y)} is viewed as the complex plane
C = {z = x + iy}, then mapped analytically
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a simple case

Before looking at genuine problems, consider a simple example

true
√

1− z
√

1 + z =
√

1− z2 (A)

and the r.h.s. is half the cost

(and vectorises better)

false
√

z − 1
√

z + 1
?
=
√

z2 − 1 (B)

consider z = −2:
√
−3
√
−1

?
=
√

3

The difference is that the branch cuts in (B) divide the complex
plane, essentially into a region of truth and a region of “well, it’s
true if the r.h.s. is the other square root”
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√
z − 1

√
z + 1

?
=
√
z2 − 1

The main region is “clearly” disconnected, so there might be
generic areas of falsity, as well as problems on the branch cuts

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



√
1− z

√
1 + z

?
=
√

1− z2

The main region is “clearly” connected, so if there are problems,
they are only on the cuts
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Kahan’s example: [Kah87, pp. 187–189]

w = g(z) := 2 arccosh

(
1 +

2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
(1)

is only the same as the ostensibly more efficient

w
?
=q(z) := 2 arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
, (2)

if we avoid the negative real axis and the area{
z = x + iy : |y | ≤

√
(x + 3)2(−2x − 9)

2x + 5
∧−9/2 ≤ x ≤ −3

}
(3)

Modern computer algebra systems will refuse to convert one into
the other, but this does not constitute a proof of difference.

Challenge

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.
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There is a solution, but

The first truly algorithmic approach is ten years old ([BCD+02],
refined in [BBDP07]), and has various difficulties.

We use Cylindrical Algebraic Decomposition of RN to find the
connected components of CN/2 \ {branch cuts}.
The complexity of this is doubly exponential in N: ≤ dO(2N )

[Hon91] and ≥ 22(N−1)/3
[BD07, DH88].

Better algorithms are in principle known ([BRSEDS12] is

dO(N
√

N)), we do not know of any accessible implementations.

We are clearly limited to small values of N, at which point
O(. . .) is of limited use. The cross-over point between
2(N−1)/3 and N

√
N is at N = 21

A more detailed comparison is given in [Hon91].

Davenport Programming semantics in the presence of complex numbers, logarithms etc.



but (2)

While the fundamental branch cut of log is simple enough,
being {z = x + iy |y = 0 ∧ x < 0}, actual branch cuts are
messier

Part of the branch cut of (2) is

2x3 +21x2 +72x +2xy 2 +5y 2 +81 = 0∧other conditions, (4)

whose solution accounts for the curious expression in (3).

While there has been some progress in manipulating such
images of half-lines (described in [PBD10, Phi11]), there is
almost certainly more to be done

Note This would also be of interest for motion-planning
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Injectivity

Consider the Joukowski map [Hen74, pp. 294–298]:

f : z 7→ 1

2

(
z +

1

z

)
. (5)

Lemma

f is injective as a function from D = {z : |z | > 1},

“Proof”: If z 7→ ζ then 1/z 7→ ζ, and there are no other
pre-images of ζ. If |z | > 1, then |1/z | < 1, so z is unique in D.
In fact f is a bijection from D to C \ [−1, 1], and hence has an
inverse.
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More formally

(5) is the conformal map C→ C that equates to the map

fR : (x , y) 7→
(

1

2
x +

1

2

x

x2 + y 2
,

1

2
y − 1

2

y

x2 + y 2

)
(6)

R2 → R2. However, it is not obvious from (6) alone that fR is a
bijection, i.e. that

∀x1x2y1y2

(
x2

1 + y 2
1 > 1 ∧ x2

2 + y 2
2 > 1 ∧ x1 + x1

x2
1 +y2

1
= x2 + x2

x2
2 +y2

2
∧

y1 − y1

x2
1 +y2

1
= y2 − y2

x2
2 +y2

2

)
⇒
(
x1 = x2 ∧ y1 = y2

)
.

(7)

Challenge

Demonstrate automatically the truth of (7).
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Towards this challenge

We have been unable to do this with either the QEPCAD [Bro03]
of Partial Cylindrical Algebraic Decomposition [CH91] or the Maple
implementation of Cylindrical Algebraic Decomposition via
triangular decomposition [CMMXY09].
However, Brown [Bro12] has been able to reformulate the problem
to make it amenable to QEPCAD, and indeed solved it in under 12
seconds.

Challenge

Automate these techniques and transforms.
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Why so difficult?

The lemma seems to be about complex functions of one variable,
so why do we need to handle (or fail to handle) statements about
four real variables to prove them?

1) The statements require the | · | function which is not complex
analytic. Hence some recourse to real analysis (and therefore
twice as many variables) seems inevitable, though it would be
nice to have a more formal statement and proof of this.

2) Equation (7) is the direct translation of the basic definition of
injectivity. In practice, certainly if we were looking at
functions R→ R, we would want to use the fact that the
function concerned was continuous.

Challenge

Find a better formulation of injectivity questions RN → RN ,
making use of the properties of the functions concerned (certainly
continuity, possibly rationality).
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Why so difficult (2)?

3) While (7) is from the existential theory of the reals, and so
the theoretically more efficient algorithms quoted in [Hon91]
are in principle applicable, the more modern developments
described in [PJ09] do not seem to be directly applicable.
However, we can transform then into a disjunction of
statements to each of which the Weak Positivstellensatz
[PJ09, Theorem 1] is applicable.

Challenge

Solve these problems using the techniques of [PJ09],
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A bijection has an inverse, right!

So what is it?
Formally: if ζ = 1

2

(
z + 1

z

)
, then 2zζ = z2 + 1 and

z = ζ ±
√
ζ2 − 1, and the only challenge is: which ± to choose?

The answer is “neither”, or at least “neither, uniformly”.
For f a bijection from {z : |z | > 1} to C \ [−1, 1], its inverse is

f1(ζ) = ζ


+
√
ζ2 − 1 =(ζ) > 0

−
√
ζ2 − 1 =ζ) < 0

+
√
ζ2 − 1 =(ζ) = 0 ∧ <(ζ) > 1

−
√
ζ2 − 1 =(ζ) = 0 ∧ <(ζ) < −1

(8)

In fact, a better (at least, free of case distinctions) definition is

f2(ζ) = ζ +
√
ζ − 1

√
ζ + 1. (9)

The techniques of [BBDP07] are able to verify (9)

Challenge

Derive automatically, and prove, either (8) or (9).

In terms of derivation, the techniques of [CJ96] seem worthy of
investigation, but the author has been unable to do this derivation
satisfactorily by this route.
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Worse

Lemma

f is injective as a function from H = {z : =z > 0}.

“proof”is the same, and we don’t have a formal proof, which needs
R4 (= is not complex analytic).
[Hen74, (5.1-13), p. 298] argues for the inverse

f2(ζ) = ζ +
√
ζ − 1︸ ︷︷ ︸

arg∈(−π/2,π/2]

√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]

. (10)

Challenge

Find a way to represent functions such as
√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]
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Worse (2)

Fortunately such bizarre functions are expressible in this case, we
can write

√
ζ + 1︸ ︷︷ ︸

arg∈(0,π]

= i
√
−ζ − 1︸ ︷︷ ︸

arg∈(−π/2,π/2]

, and the latter is the normal

sqrt function of [AS64]. Hence we have an inverse function

f3(ζ) = ζ +
√
ζ − 1i

√
−ζ − 1. (11)

Challenge

Demonstrate automatically that this is an inverse to f on
{z : =z > 0}.
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A Higher-level challenge

Most of what we have been talking about is represented in
“normal” texts such as [Hen74], and a programmer implementing
this would write comments (we hope!).
How to turn these into any sort of machine-readable specification?
This may be related to the more general question of capture of
side-conditions, see Ariane-V.
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